Study on Hydrodynamics Characteristics of a Single Bubble in Viscoelastic Fluid at Low Weissenberg Numbers
-
摘要: 使用VOF法数值研究了气泡在黏弹性流体中的上浮运动,黏弹性模型选用Oldroyd-B模型.在低Weissenberg数(Wi)下,研究了黏性力、松弛时间、表面张力和黏度比对气泡上浮运动的影响.结果表明,当黏性力和弹性力较大(如Ga=2,Wi≥0.5和β=0.2)时,气泡尾部会出现“尾缘尖”现象,“尾缘尖”现象随着弹性的增强和表面张力的减小变得明显;当弹性较弱(如Wi=0.1)时,“尾缘尖”现象消失,气泡呈为帽形;当表面张力较大(如Eo=1)时,气泡呈现为纵向拉长的椭圆形,尾部特征不明显;在黏弹性流体中,表面张力对气泡的影响与在黏性流体中的相似;气泡在上浮过程中,随形状的变化,表现出“持续加速到稳定”和“加速-减速-再加速到稳定”两种上浮形式,在黏弹性流体中,气泡的上浮速度高于在纯黏性流体中的上浮速度;气泡周围的弹性应力与流体的黏度和松弛时间有关,随着黏度的减小和松弛时间的增大,弹性应力作用范围变宽.
-
关键词:
- 黏弹性流体 /
- 气泡上浮运动 /
- Oldroyd-B模型 /
- VOF法
Abstract: The VOF method was used to numerically study the upward motion of a single bubble in viscoelastic fluid, and the Oldroyd-B model was applied to describe the fluid viscoelastic property. At low Weissenberg numbers (Wi≤1), the effects of the viscous force, the relaxation time, the surface tension and the viscosity ratio on the rising motion of the bubble were studied. The results show that, under relatively large viscous and elastic forces (such as Ga=2, Wi≥0.5 and β=0.2), the bubble exhibits the phenomenon of "a pointed rear end", and this phenomenon intensifies with the increase of the elasticity and the decrease of the surface tension. Otherwise, under a relatively weak elasticity (such as Wi=0.1), the phenomenon of "a pointed rear end" disappears, and the bubble bears a hat-like shape. For a large surface tension (such as Eo=1), the bubble bears a longitudinally elongated ellipse-like shape without distinct tail features. The effect of the surface tension on the bubble in viscoelastic fluid is like that in viscous fluid. The bubble has 2 types of rising motions, namely, "continuous acceleration" to a stable velocity and "acceleration-deceleration-reacceleration" to a stable velocity, and the bubble rising velocity in viscoelastic fluid is higher than that in pure viscous fluid. The elastic stress around the bubble is influenced by the viscosity and the relaxation time of the fluid, and with the decrease of the fluid viscosity or/and the increase of the relaxation time, the incidence of the elastic stress becomes wide.-
Key words:
- viscoelastic fluid /
- bubble rising motion /
- Oldroyd-B model /
- VOF method
-
表 1 计算工况
Table 1. Design of the computation case
Wi β Ga=2 Ga=4 Ga=8 Ga=16 Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100 0.1 0.2 √ √ √ √ √ √ √ √ √ √ √ √ 0.5 √ √ √ √ 0.8 √ √ √ √ 0.5 0.2 √ √ √ √ √ √ √ √ √ √ √ √ 0.5 √ √ √ √ 0.8 √ √ √ √ 1 0.2 √ √ √ √ √ √ √ √ √ √ √ √ 0.5 √ √ √ √ 0.8 √ √ √ √ -
[1] TSUJINO T, SHIMA A. The behaviour of gas bubbles in blood subjected to an oscillating pressure[J]. Journal of Biomechanics, 1980, 13(5): 407-416. doi: 10.1016/0021-9290(80)90034-2 [2] YANG G Q, LUO X, LAU R, et al. Heat-transfer characteristics in slurry bubble columns at elevated pressures and temperatures[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2568-2577. [3] CHHABRA R P. Bubbles, Drops, and Particles in Non-Newtonian Fluids[M]. CRC Press, 2006: 10-25. [4] SAFFMAN P G. On the rise of small air bubbles in water[J]. Journal of Fluid Mechanics, 1956, 1(3): 249-275. doi: 10.1017/S0022112056000159 [5] 蔡子琦. 牛顿流体中气泡动力学行为的实验研究[D]. 博士学位论文. 北京: 北京化工大学, 2011.CAI Ziqi. Experimental study on bubble dynamic behavior in Newtonian fluid[D]. PhD Thesis. Beijing: Beijing University of Chemical Technology, 2011. (in Chinese) [6] WANCHOO R K, SHARMA S K, RAINA G K. Drag coefficient and velocity of rise of a single collapsing two-phase bubble[J]. AIChE Journal, 1997, 43(8): 1955-1963. doi: 10.1002/aic.690430805 [7] MIYAHARA T, YAMANAKA S. Mechanics of motion and deformation of a single bubble rising through quiescent highly viscous Newtonian and non-Newtonian media[J]. Journal of Chemical Engineering of Japan, 1993, 26(3): 297-302. doi: 10.1252/jcej.26.297 [8] SAITO T, SAKAKIBARA K, MIYAMOTO Y, et al. A study of surfactant effects on the liquid-phase motion around a zigzagging-ascent bubble using a recursive cross-correlation PIV[J]. Chemical Engineering Journal, 2010, 158(1): 39-50. doi: 10.1016/j.cej.2008.07.021 [9] YAN X, ZHENG K, JIA Y, et al. Drag coefficient prediction of a single bubble rising in liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5385-5393. [10] HOQUE M M, MITRA S, EVANS G M, et al. Modulation of turbulent flow field in an oscillating grid system owing to single bubble rise[J]. Chemical Engineering Science, 2018, 185: 26-49. doi: 10.1016/j.ces.2018.03.039 [11] 胡波, 庞明军. 特征时间对剪切稀化流体气泡上浮特性的影响[J]. 化工进展, 2020, 40(5): 2440-2451. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202105008.htmHU Bo, PANG Mingjun. Effect of characteristic time on bubble upwelling characteristics of shear thinning fluid[J]. Chemical Industry Progress, 2020, 40(5): 2440-2451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202105008.htm [12] 孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099SUN Tao, PANG Mingjun, FEI Yang. Influence of bubble spacing on interface properties and wake flow of polluted spherical bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. (in Chinese) doi: 10.21656/1000-0887.410099 [13] 庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194PANG Mingjun, NIU Ruipeng, LU Minjie. Effect of wall effect on bubble buoyancy in shear thinning fluid[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. (in Chinese) doi: 10.21656/1000-0887.400194 [14] PREMLATA A R, TRIPATHI M K, KARRI B, et al. Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid[J]. Physics of Fluids, 2017, 29(3): 033103. doi: 10.1063/1.4979136 [15] 陆敏杰, 庞明军. 静止幂律流体中气泡上浮运动特性的数值研究[J]. 工程热物理学报, 2018, 39(11): 2454-2462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811017.htmLU Minjie, PANG Mingjun. Numerical study of bubble upward motion in stationary power-law fluid[J]. Chinese Journal of Engineering Thermophysics, 2018, 39(11): 2454-2462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811017.htm [16] MAJUMDAR A, DAS P K. Rise of Taylor bubbles through power law fluids: analytical modelling and numerical simulation[J]. Chemical Engineering Science, 2019, 205: 83-93. doi: 10.1016/j.ces.2019.04.028 [17] 孙涛, 庞明军, 陆敏杰, 等. 剪切稠化流体内气泡上浮运动特性[J]. 化学工程, 2019, 47(11): 56-61. doi: 10.3969/j.issn.1005-9954.2019.11.011SUN Tao, PANG Mingjun, LU Minjie, et al. Characteristics of bubble upward motion in shear thickened fluid[J]. Chemical Engineering, 2019, 47(11): 56-61. (in Chinese) doi: 10.3969/j.issn.1005-9954.2019.11.011 [18] SOTO E, GOUJON C, ZENIT R, et al. A study of velocity discontinuity for single air bubbles rising in an associative polymer[J]. Physics of Fluids, 2006, 18(12): 121510. doi: 10.1063/1.2397011 [19] SUN B, GUO Y, WANG Z, et al. Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 867-872. doi: 10.1016/j.jngse.2015.07.020 [20] 徐双, 李少白, 范俊赓, 等. 粘弹性流体中气泡上升过程的轨迹分析[J]. 沈阳航空航天大学学报, 2016, 33(5): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX201605016.htmXU Shuang, LI Shaobai, FAN Jungeng, et al. Trajectory analysis of bubble rising process in viscoelastic fluid[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2016, 33(5): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX201605016.htm [21] KORDORWU V. 粘弹性流体中上升CO2气泡动力学和传质的实验研究[D]. 硕士学位论文. 大连: 大连理工大学, 2021.KORDORWU V. Experimental study on dynamics and mass transfer of CO2 bubbles rising in viscoelastic fluids[D]. Master Thesis. Dalian: Dalian University of Technology, 2021. (in Chinese) [22] 白丽娜, 曹佰旭, 胡钊晨, 等. 黏弹性流体中单气泡上升速度的研究[J]. 高校化学工程学报, 2019, 33(5): 1064-1069. doi: 10.3969/j.issn.1003-9015.2019.05.005BAI Lina, CAO Baixu, HU Zhaochen, et al. Study on single bubble rising velocity in viscoelastic fluid[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1064-1069. (in Chinese) doi: 10.3969/j.issn.1003-9015.2019.05.005 [23] ASTARITA G, APUZZO G. Motion of gas bubbles in non-Newtonian liquids[J]. AIChE Journal, 1965, 11(5): 815-820. doi: 10.1002/aic.690110514 [24] HASSAGER O. Negative wake behind bubbles in non-Newtonian liquids[J]. Nature, 1979, 279(5712): 402-403. doi: 10.1038/279402a0 [25] ZANA E, LEAL L G. The dynamics and dissolution of gas bubbles in a viscoelastic fluid[J]. International Journal of Multiphase Flow, 1978, 4(3): 237-262. doi: 10.1016/0301-9322(78)90001-0 [26] SOUSA R G, NOGUEIRA S, PINTO A, et al. Flow in the negative wake of a Taylor bubble rising in viscoelastic carboxymethylcellulose solutions: particle image velocimetry measurements[J]. Journal of Fluid Mechanics, 2004, 511: 217-236. doi: 10.1017/S0022112004009644 [27] KEMIHA M, FRANK X, PONCIN S, et al. Origin of the negative wake behind a bubble rising in non-Newtonian fluids[J]. Chemical Engineering Science, 2006, 61(12): 4041-4047. doi: 10.1016/j.ces.2006.01.051 [28] YAMAGUCHI H, UENO Y. Deformation of a single rising bubble in non-Newtonian liquid[J]. Nihon Reoroji Gakkaishi, 2005, 33(1): 41-43. doi: 10.1678/rheology.33.41 [29] SOTO E, GOUJON C, ZENIT R, et al. A study of velocity discontinuity for single air bubbles rising in an associative polymer[J]. Physics of Fluids, 2006, 18(12): 121510. doi: 10.1063/1.2397011 [30] MIRZAAGHA S, PASQUINO R, IULIANO E, et al. The rising motion of spheres in structured fluids with yield stress[J]. Physics of Fluids, 2017, 29(9): 093101. doi: 10.1063/1.4998740 [31] WAGNER A J, GIRAUD L, SCOTT C E. Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method[J]. Computer Physics Communications, 2000, 129(1/3): 227-232. [32] PILLAPAKKAM S B, SINGH P, BLACKMORE D, et al. Transient and steady state of a rising bubble in a viscoelastic fluid[J]. Journal of Fluid Mechanics, 2007, 589: 215-252. [33] FRAGGEDAKIS D, PAVLIDIS M, DIMAKOPOULOS Y, et al. On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid[J]. Journal of Fluid Mechanics, 2016, 789: 310-346. [34] FATTAL R, KUPFERMAN R. Constitutive laws for the matrix-logarithm of the conformation tensor[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2/3): 281-285. [35] FATTAL R, KUPFERMAN R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(1): 23-37. [36] AFONSO A M, PINHO F T, ALVES M A. The kernel-conformation constitutive laws[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167: 30-37. [37] YUAN W, ZHANG M, KHOO B C, et al. Dynamics and deformation of a three-dimensional bubble rising in viscoelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 285: 104408. [38] OHTA M, FURUKAWA T, YOSHIDA Y, et al. A three-dimensional numerical study on the dynamics and deformation of a bubble rising in a hybrid Carreau and FENE-CR modeled polymeric liquid[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 66-78. [39] WAGNER A J. Simulations of a rising drop in a non-linear viscoelastic fluid[J]. Progress in Computational Fluid Dynamics, an International Journal, 2005, 5(1/2): 20-26. [40] LARIMI M M, RAMIAR A. Two-dimensional bubble rising through quiescent and non-quiescent fluid: influence on heat transfer and flow behavior[J]. International Journal of Thermal Sciences, 2018, 131: 58-71. [41] SARKAR K, SCHOWALTER W R. Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 95(2/3): 315-342. [42] YOUNGS D L. Time-Dependent Multi-Material Flow With Large Fluid Distortion[M]//MORTON K W, BAINES M J, ed. Numerical Methods for Fluid Dynamics. New York: Academic Press, 1982: 273-285. [43] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. [44] AMIRNIA S, DE BRUYN J R, BERGOUGNOU M A, et al. Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions[J]. Chemical Engineering Science, 2013, 94: 60-68. [45] 闫思娜, 罗兴锜, 冯建军, 等. 含气率对气液两相流离心泵性能的影响[J]. 水动力学研究与进展(A辑), 2019, 34(3): 353-360. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201903011.htmYAN Sina, LUO Xingqi, FENG Jianjun, et al. Effect of gas content on performance of gas-liquid two-phase flow centrifugal pump[J]. Research and Progress in Hydrodynamics(Series A), 2019, 34(3): 353-360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201903011.htm [46] 张泽斌, 李永, 陈荣尚, 等. 含气率对润滑油黏度的影响[J]. 河南科技大学学报(自然科学版), 2019, 40(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201902006.htmZHANG Zebin, LI Yong, CHEN Rongshang, et al. Effect of gas content on viscosity of lubricating oil[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2019, 40(2): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201902006.htm [47] NIETHAMMER M, BRENN G, MARSCHALL H, et al. An extended volume of fluid method and its application to single bubbles rising in a viscoelastic liquid[J]. Journal of Computational Physics, 2019, 387: 326-355. [48] BOTHE D, NIETHAMMER M, PILZ C, et al. On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2022, 302: 104748.