留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直齿锥齿轮分岔脱啮特性参数解域界结构

田亚平 杨江辉 王瑞邦

田亚平, 杨江辉, 王瑞邦. 直齿锥齿轮分岔脱啮特性参数解域界结构[J]. 应用数学和力学, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330
引用本文: 田亚平, 杨江辉, 王瑞邦. 直齿锥齿轮分岔脱啮特性参数解域界结构[J]. 应用数学和力学, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330
TIAN Yaping, YANG Jianghui, WANG Ruibang. Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330
Citation: TIAN Yaping, YANG Jianghui, WANG Ruibang. Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 965-976. doi: 10.21656/1000-0887.430330

直齿锥齿轮分岔脱啮特性参数解域界结构

doi: 10.21656/1000-0887.430330
基金项目: 

甘肃省科技厅计划项目 21JR7RA316

甘肃省科技厅计划项目 20YF8WA043

国家自然科学基金项目 12062008

国家自然科学基金项目 11962011

详细信息
    通讯作者:

    田亚平(1977—),男,副教授,博士,硕士生导师(通讯作者. E-mail: tianyp@lzjtu.edu.cn)

  • 中图分类号: O322;TH132.422

Parametric Solution Domain Structures for Bifurcation and Non-Meshing Dynamic Characteristics of Straight Bevel Gear Systems

  • 摘要: 为研究含间隙直齿锥齿轮系统周期运动与齿面冲击、脱啮、动载间的耦合转迁关系,基于胞映射原理构建了时变啮合刚度和频率比双参平面,采用改进的CPNF(continuous-Poincaré-Newton-Floquet)法求解了系统胞元的周期、冲击、脱啮、动载特性解域界结构. 仿真结果表明,在双参解域界内系统存在鞍结、Hopf、倍化、激变及周期3等分岔方式和3种齿面冲击共存现象,随时变啮合刚度系数递增其冲击和混沌现象加剧. 齿面脱啮、齿背接触及动载系数受齿面冲击和周期分岔的影响而发生突变,在同一界域内随频率比增加而降低,随刚度系数增加而加剧.
  • 图  1  齿轮箱

    Figure  1.  The bevel gearbox

    图  2  动力学模型

    Figure  2.  The nonlinear dynamic model for a spiral bevel gear set

    图  3  Ω×α平面动态特性解域界结构

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Dynamic properties solution domain boundary structures in the Ω×α 2-parameter plane

    图  4  Ω×α双参分岔图

    Figure  4.  The bifurcation diagram in the Ω×α 2-parameter plane

    图  5  分岔图

    Figure  5.  The bifurcation diagram via α

    图  6  Poincaré映射图和相图

    Figure  6.  Poincaré and phase maps

    图  7  Poincaré映射图和相图

    Figure  7.  Poincaré and phase maps

    图  8  脱啮比、动载系数分布图

    Figure  8.  The δNMDC, δBMDC and δDLC distribution diagrams

  • [1] 王三民, 沈允文, 董海军. 含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J]. 机械工程学报, 2003, 39 (2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200302005.htm

    WANG Sanmin, SHEN Yunwen, DONG Haijun. Nonlinear dynamical characteristics of a spiral bevel gear system with backlash and time-varying stiffness[J]. Chinese Journal of Mechanical Engineering, 2003, 39 (2): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200302005.htm
    [2] 黄康, 孙亚斌, 程彪. 螺旋锥齿轮副非线性动力学研究[J]. 合肥工业大学学报, 2018, 41 (8): 1009-1013. doi: 10.3969/j.issn.1003-5060.2018.08.001

    HUANG Kang, SUN Yabin, CHENG Biao. Research on nonlinear dynamics behavior of spiral bevel gear pair[J]. Journal of Hefei University of Technology, 2018, 41 (8): 1009-1013. (in Chinese) doi: 10.3969/j.issn.1003-5060.2018.08.001
    [3] WANG Z, PU W, PEI X, et al. Nonlinear dynamical behaviors of spiral bevel gears in transient mixed lubrication[J]. Tribology International, 2021, 160 : 107022. doi: 10.1016/j.triboint.2021.107022
    [4] HUA X, CHEN Z. Effect of roller bearing elasticity on spiral bevel gear dynamics[J]. Advances in Mechanical Engineering, 2020, 12 (7): 1-9.
    [5] CAO W, HE T, PU W, et al. Dynamics of lubricated spiral bevel gears under different contact paths[J]. Friction, 2022, 10 (2): 247-267. doi: 10.1007/s40544-020-0477-x
    [6] 李飞, 袁茹, 朱慧玲, 等. 计及齿面摩擦的弧齿锥齿轮动态特性[J]. 航空动力学报, 2020, 35 (8): 1687-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008013.htm

    LI Fei, YUAN Ru, ZHU Huiling, et al. Dynamic characteristics of spiral bevel gear considering tooth surface friction[J]. Journal of Aerospace Power, 2020, 35 (8): 1687-1694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008013.htm
    [7] 张磊, 唐从刚, 王德全, 等. 小波Galerkin法在非线性分岔问题求解中的应用[J]. 应用数学和力学, 2021, 42 (1): 27-35. doi: 10.21656/1000-0887.410085

    ZHANG Lei, TANG Conggang, WANG Dequan, et al. Application of wavelet Galerkin method to solution of nonlinear bifurcation problems[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 27-35. (in Chinese) doi: 10.21656/1000-0887.410085
    [8] 王树国, 张艳波, 刘文亮, 等. 多间隙二级齿轮非线性振动分岔特性研究[J]. 应用数学和力学, 2016, 37 (2): 173-183. doi: 10.3879/j.issn.1000-0887.2016.02.006

    WANG Shuguo, ZHANG Yanbo, LIU Wenliang, et al. Nonlinear vibration bifurcation characteristics of multi-clearance 2-stage gear systems[J]. Applied Mathematics and Mechanics, 2016, 37 (2): 173-183. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.02.006
    [9] GOU X, ZHU L, CHEN D. Bifurcation and chaos analysis of spur gear pair in two-parameter plane[J]. Nonlinear Dynamics, 2015, 79 (3): 2225-2235. doi: 10.1007/s11071-014-1807-1
    [10] LIU X, JIANG J, HONG L, et al. Wada boundary bifurcations induced by boundary saddle collision[J]. Physics Letters A, 2018, 383 (2/3): 170-175.
    [11] 林何, 洪灵, 江俊, 等. 受激并车弧齿锥齿轮系统两参量平面上解域界结构[J]. 振动工程学报, 2021, 34 (5): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202105016.htm

    LIN He, HONG Ling, JIANG Jun, et al. Solution domain structures of power combining spiral bevel gear system under excitations in two-parameter plane[J]. Journal of Vibration Engineering, 2021, 34 (5): 1020-1026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202105016.htm
    [12] 李同杰, 朱如鹏, 鲍和云, 等. 行星齿轮传动系的周期运动及其稳定性[J]. 振动工程学报, 2013, 26 (6): 815-822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306002.htm

    LI Tongjie, ZHU Rupeng, BAO Heyun, et al. Coexisting periodic solutions and their stability of a nonlinear planetary gear train[J]. Journal of Vibration Engineering, 2013, 26 (6): 815-822. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201306002.htm
    [13] 田亚平, 徐璐, 宋佩颉, 等. 基于OGY的含间隙单级齿轮系统混沌运动控制[J]. 振动与冲击, 2020, 39 (14): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014003.htm

    TIAN Yaping, XU Lu, SONG Peijie, et al. Chaos control of a single-stage spur gear system with backlash based on the OGY method[J]. Journal of Vibration and Shock, 2020, 39 (14): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014003.htm
    [14] 田亚平, 褚衍东, 饶晓波. 双参平面内单级直齿圆柱齿轮系统动力学特性综合分析[J]. 振动工程学报, 2018, 31 (2): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201802004.htm

    TIAN Yaping, CHU Yandong, RAO Xiaobo. Dynamic characteristic analysis of a single-stage spur gear system in two-parameter plane[J]. Journal of Vibration Engineering, 2018, 31 (2): 219-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201802004.htm
    [15] 陈思宇, 谭儒龙, 郭晓冬. 直齿锥齿轮啮合刚度计算方法研究[J]. 机械传动, 2021, 45 (9): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202109009.htm

    CHEN Siyu, TANG Rulong, GUO Xiaodong. Research on calculation method of meshing stiffness of straight bevel gear[J]. Journal of Mechanical Transmission, 2021, 45 (9): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202109009.htm
    [16] 李润方, 王建军. 齿轮系统动力学-振动、冲击、噪声[M]. 北京: 科学出版社, 1997.

    LI Runfang, WANG Jianjun. Gear System Dynamics Vibration, Shock and Noise[M]. Beijing: Science Press, 1997. (in Chinese)
    [17] 史美娇, 徐慧东, 张建文. 双侧弹性约束悬臂梁的非光滑擦边动力学[J]. 应用数学和力学, 2022, 43 (6): 619-630. doi: 10.21656/1000-0887.420177

    SHI Meijiao, XU Huidong, ZHANG Jianwen. Non-smooth grazing dynamics for cantilever beams with bilateral elastic constraints[J]. Applied Mathematics and Mechanics, 2022, 43 (6): 619-630. (in Chinese) doi: 10.21656/1000-0887.420177
  • 加载中
图(8)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  106
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-12-27
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回