留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温差影响下的局部滑移接触行为的研究

杨阳 王凯模 沈火明 王宇星

杨阳,王凯模,沈火明,王宇星. 温差影响下的局部滑移接触行为的研究 [J]. 应用数学和力学,2023,44(2):123-132 doi: 10.21656/1000-0887.430334
引用本文: 杨阳,王凯模,沈火明,王宇星. 温差影响下的局部滑移接触行为的研究 [J]. 应用数学和力学,2023,44(2):123-132 doi: 10.21656/1000-0887.430334
YANG Yang, WANG Kaimo, SHEN Huoming, WANG Yuxing. Research on Partial Slip Contact Behaviors Under Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(2): 123-132. doi: 10.21656/1000-0887.430334
Citation: YANG Yang, WANG Kaimo, SHEN Huoming, WANG Yuxing. Research on Partial Slip Contact Behaviors Under Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(2): 123-132. doi: 10.21656/1000-0887.430334

温差影响下的局部滑移接触行为的研究

doi: 10.21656/1000-0887.430334
基金项目: 国家自然科学基金(面上项目)(11672252);中央高校基本科研费(科技创新项目)(2682022CX056)
详细信息
    作者简介:

    杨阳(1998—),男,硕士生(E-mail:249037911@qq.com

    沈火明(1968—),男,教授(通讯作者. E-mail:hmshen@126.com

  • 中图分类号: TH117; O343.6

Research on Partial Slip Contact Behaviors Under Temperature Effects

  • 摘要:

    针对不同温度装配件间接触界面的局部滑移问题,建立了三维稳态热弹性局部滑移接触的半解析求解模型。基于热弹性理论与热传导方程,构建了半空间受热流载荷和力载荷作用下的频响函数并建立了相应的影响系数矩阵。借助离散卷积-快速Fourier变换等数学工具,实现了针对高温压头与热弹性半空间局部滑移接触问题的高效求解。接触界面间的热量传递满足Fourier热传导定律,并且黏/滑状态由Coulomb定律确定。基于该半解析模型分析了不同荷载及温差对表面法向压力分布、摩擦力分布、刚体位移及接触区黏/滑演化行为的影响。研究结果表明,当法向荷载和切向荷载一定时,温差的上升会导致接触区域的减小,引起接触面法向压力及摩擦力的峰值增大,并且会显著影响黏着区与滑移区的分布情况。

  • 图  1  热流作用示意图

    Figure  1.  Diagram of the heat flow action

    图  2  三维接触模型示意图

    Figure  2.  Schematic diagram of the 3D contact model

    图  3  流程图

    Figure  3.  The flow chart

    图  4  半解析法向压力p沿x轴方向的分布与Hertz解析解的对比

    Figure  4.  Comparison between the distribution of semi-analytical normal pressure p along the x-axis and the Hertz analytical solution

    图  5  切向力${q_x}$沿x轴方向的分布

    Figure  5.  The distribution of tangential force ${q_x}$ along the x-axis

    图  6  不同温差、切向荷载下,无量纲切向力沿x轴方向的分布:(a) ${F_x} = 0.3\mu _f P$;(b) ${F_x} = 0.9\mu _f P$

    Figure  6.  Distributions of the dimensionless tangential force along the x-axis under different temperature rises and tangential loads: (a) ${F_x} = 0.3\mu _f P$; (b) ${F_x} = 0.9\mu _f P$

    图  7  不同温差、切向荷载下,无量纲法向压力沿x轴方向的分布:(a) ${F_x} = 0.3\mu _fP$;(b) ${F_x} = 0.9\mu _fP$

    Figure  7.  Distributions of the dimensionless normal pressure along the x-axis under different temperature rises and tangential loads: (a) ${F_x} = 0.3\mu _fP$; (b) ${F_x} = 0.9\mu _f P$

    图  8  300 ℃温差下不同切向荷载作用下法向压力沿x轴方向的分布

    Figure  8.  Distributions of the normal pressure along the x-axis under different tangential loads at a temperature rise of 300 ℃

    图  9  不同温差下刚体位移与切向荷载的关系

    Figure  9.  Relationships between the rigid body displacement and the tangential load at different temperatures rises

    图  10  不同切向荷载下黏/滑比与温差的关系

    Figure  10.  Relationships between the stick/slip ratio and the temperature under different tangential loads

    表  1  模型参数

    Table  1.   Model parameters

    model parametervalue
    normal load $P/{\rm{N}}$20
    tangential load ${F_x}/{\rm{N}}$$\left( {0 \sim 0.9} \right) \times {\mu _f}P$
    tangential load ${F_y}/{\rm{N}}$0
    friction coefficient ${\mu _f}$0.3
    ball radius $R/{\rm{mm}}$18
    maximum Hertzian pressure ${p_{\max } }/{\rm{MPa}}$907
    elastic half space modulus $E/{\rm{GPa}}$210
    Poisson’s ratio of elastic half space $\nu $0.3
    thermal expansion in coefficient elastic half space K$2.0 \times {10^{ - 5}}$
    elastic half space heat transfer coefficien $Q/({{\text{W}}/ {({\text{m}} \cdot {\text{K}})}}$)60
    下载: 导出CSV
  • [1] JOHNSON K L. Contact Mechanics[M]. Cambridge, UK: Cambridge University Press, 1985.
    [2] LAKKARAJU R K, BOBARU F, ROHDE S L. Optimization of multilayer wear-resistant thin filmsusing finite element analysis on stiff and compliantsubstrates[J]. Journal of Vacuum Science & Technology A, 2006, 24(1): 146-155.
    [3] 潘先云, 余江鸿, 周枫林. 非齐次弹性力学问题双互易边界元方法研究[J]. 应用数学和力学, 2022, 43(9): 1004-1015

    PAN Xianyun, YU Jianghong, ZHOU Fenglin. Research on the dual reciprocity boundary element method for non-homogeneous elasticity problems[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1004-1015.(in Chinese)
    [4] 王晋宝, 童焯煜, 何博, 等. 考虑应力沿深度变化的饱和软黏土一维固结半解析解[J]. 应用数学和力学, 2019, 40(10): 1099-1108

    WANG Jinbao, TONG Zhuoyu, HE Bo, et al. A semi-analytical 1D consolidation solution of saturated soft clay with changing stresses along the depth[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1099-1108.(in Chinese)
    [5] KUPCHYTSR, BAJKOWSKIA. Elastic coating within homogeneous inter layer under the action of normal and tangential forces[J]. Materials Science, 2014, 49(5): 650-659. doi: 10.1007/s11003-014-9659-x
    [6] WANG Z J, WANG W Z, WANG H, et al. Partial slip contact analysis on three-dimensional elastic layered half space[J]. Journal of Tribology, 2010, 132(2): 021403. doi: 10.1115/1.4001011
    [7] CHEN W, WANG Q J. A numerical static friction model for spherical contacts of rough surfaces, influence of load, material, and roughness[J]. Journal of Tribology, 2009, 131(2): 021402. doi: 10.1115/1.3063814
    [8] WANG Z J, JIN X, LIU S B, et al. A new fast method for solving contact plasticity and its application in analyzing elasto-plastic partial slip[J]. Mechanics of Materials, 2013, 60: 18-35. doi: 10.1016/j.mechmat.2013.01.001
    [9] WANG Z J, MENG F M, XIAO K, et al. Numerical analysis of partial slip contact under a tangential force anda twisting moment[J]. Proceedings of the Institution of Mechanical Engineers (Part J): Journal of Engineering Tribology, 2011, 225(2): 72-83. doi: 10.1177/2041305X10392125
    [10] 向金兰, 刘娟, 沈火明. 热源影响下的涂层板滑动接触问题研究[J]. 机械科学与技术, 2021, 40(2): 165-167 doi: 10.13433/j.cnki.1003-8728.20200040

    XIANG Jinlan, LIU Juan, SHEN Huoming. Study on sliding contact problem of coated plate considering heat source[J]. Mechanical Science and Technology, 2021, 40(2): 165-167.(in Chinese) doi: 10.13433/j.cnki.1003-8728.20200040
    [11] 李玲, 田海飞, 云强强, 等. 微动接触中分形粗糙表面的温升分布研究[J]. 表面技术, 2019, 48(6): 238-244 doi: 10.16490/j.cnki.issn.1001-3660.2019.06.028

    LI Ling, TIAN Haifei, YUN Qiangqiang, et al. Temperature rise distribution of fractal rough surface in fretting contact[J]. Surface Technology, 2019, 48(6): 238-244.(in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2019.06.028
    [12] ZHANG X, SHEN H M, LIU J, et al. An efficient numerical model for predicting the torsional fretting wear considering real rough surface[J]. Wear, 2015, 344/345: 32-45. doi: 10.1016/j.wear.2015.10.019
    [13] ZHANG X, WANG Z J, SHEN H M, et al. Dynamic contact in multiferroic energy conversion[J]. International Journal of Solids and Structures, 2018, 143: 84-102. doi: 10.1016/j.ijsolstr.2018.02.034
    [14] LIU S, WANG Q. Studying contact stress fields caused by surface tractions with a discrete convolution and fast Fourier transform algorithm[J]. Journal of Tribology, 2002, 124(1): 36-45. doi: 10.1115/1.1401017
    [15] POLONSKY I A, KEER L M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques[J]. Wear, 1999, 231(2): 206-219. doi: 10.1016/S0043-1648(99)00113-1
    [16] 王宇星. 三维偶应力弹性体接触力学问题的半解析法建模研究[D]. 博士学位论文. 成都: 西南交通大学, 2021.

    WANG Yuxing. Semi-analytical modeling of three-dimensional contact problem within the framework[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  308
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-12-26
  • 网络出版日期:  2023-02-09
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回