留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于键型近场动力学非连续Galerkin有限元法的爆炸毁伤模拟

成嘉禾 顾鑫 章青

成嘉禾, 顾鑫, 章青. 基于键型近场动力学非连续Galerkin有限元法的爆炸毁伤模拟[J]. 应用数学和力学, 2023, 44(4): 394-405. doi: 10.21656/1000-0887.430338
引用本文: 成嘉禾, 顾鑫, 章青. 基于键型近场动力学非连续Galerkin有限元法的爆炸毁伤模拟[J]. 应用数学和力学, 2023, 44(4): 394-405. doi: 10.21656/1000-0887.430338
CHENG Jiahe, GU Xin, ZHANG Qing. Blast Damage Simulation With the Discontinuous Galerkin Finite Element Method of Bond-Based Peridynamics[J]. Applied Mathematics and Mechanics, 2023, 44(4): 394-405. doi: 10.21656/1000-0887.430338
Citation: CHENG Jiahe, GU Xin, ZHANG Qing. Blast Damage Simulation With the Discontinuous Galerkin Finite Element Method of Bond-Based Peridynamics[J]. Applied Mathematics and Mechanics, 2023, 44(4): 394-405. doi: 10.21656/1000-0887.430338

基于键型近场动力学非连续Galerkin有限元法的爆炸毁伤模拟

doi: 10.21656/1000-0887.430338
(我刊编委章青来稿)
基金项目: 

国家自然科学基金项目 12172121

国家自然科学基金项目 U1934206

中央高校科研业务费 B210201031

详细信息
    作者简介:

    成嘉禾(1997—),男,硕士生(E-mail: jexooooo@163.com)

    顾鑫(1991—),男,副研究员,硕士生导师(E-mail: xingu@hhu.edu.cn)

    通讯作者:

    章青(1963—),男,教授,博士生导师(通讯作者. E-mail: lxzhangqing@hhu.edu.cn)

  • 中图分类号: O242;O342

Blast Damage Simulation With the Discontinuous Galerkin Finite Element Method of Bond-Based Peridynamics

(Contributed by ZHANG Qing, M. AMM Editorial Board)
  • 摘要: 近场动力学是一种积分型非局部的连续介质力学理论,已广泛应用于固体材料和结构的非连续变形与破坏分析中,其数值求解方法主要采用无网格粒子类的显式动力学方法.近年来,弱形式近场动力学方程的非连续Galerkin有限元法得到发展,该方法不仅可以描述考察体的非局部作用效应和非连续变形特性,还可以充分利用有限单元法高效求解的特点,并继承了有限元法能直接施加局部边界条件的优点,可有效避免近场动力学的表面效应问题.该文阐述了键型近场动力学的非连续Galerkin有限元法的基本原理,导出了计算列式,给出了具体算法流程和细节,计算模拟了脆性玻璃板动态开裂分叉问题,并对爆炸冲击荷载作用下混凝土板的毁伤过程进行了计算分析.研究结果表明,该方法能够再现爆炸冲击荷载作用下结构的复杂破裂模式和毁伤破坏过程,且具有较高的计算效率,是模拟结构爆炸冲击毁伤效应的一种有效方法.
    1)  (我刊编委章青来稿)
  • 图  1  传统有限元的连续网格(左)与非连续Galerkin有限元的网格(右)[22]

    Figure  1.  The continuous mesh of traditional finite elements (left) and the mesh of non-continuous Galerkin finite element (right)[22]

    图  2  含预制裂纹玻璃板及其外荷载

    Figure  2.  The pre-cracked glass panel and its external load

    图  3  本文方法(左)与Ha等[26]方法(右)得到的裂纹扩展模式(t=46 μs)

    Figure  3.  The crack propagation modes obtained with the present method (left) and the method of Ha et al. [26] (right) (t=46 μs)

    图  4  本文方法(上)与Ha等[26]方法(下)得到的裂纹在分叉点演变情况

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The evolution of crack bifurcation points obtained with the present method (top) and the method of Ha et al.[26] (bottom)

    图  5  左右两边固定约束(左)与四周固定约束(右)的几何模型

    Figure  5.  Geometric models with fixed constraints on the left and right sides (left) and fixed constraints on all sides (right)

    图  6  对边固定混凝土板迎爆面(上)与背爆面(下)的毁伤情况

    Figure  6.  The damages of the front surface (top) and the back surface (bottom) of the concrete slab fixed on the opposite sides

    图  7  四边固定混凝土板迎爆面(上)与背爆面(下)的毁伤情况

    Figure  7.  The damages of the front surface (top) and the back surface (bottom) of the concrete slab fixed on 4 sides

    图  8  0.5 m,0.6 m爆距下,起爆11.5 ms时刻混凝土板迎爆面(左)与背爆面(右)的毁伤情况

    Figure  8.  The damages of the front surface (left) and the back surface (right) of the concrete slab at 11.5 ms after detonation at 0.5 m, 0.6 m blast distances

    图  9  0.1 kg,0.3 kg炸药当量下,起爆11.5 ms时刻混凝土板迎爆面(左)与背爆面(右)的毁伤情况

    Figure  9.  The damages of the front surface (left) and the back surface (right) of the concrete slab at 11.5 ms after detonation for 0.1 kg, 0.3 kg explosive equivalents

    表  1  计算时间对比

    Table  1.   The computation time comparison

    Δx=1 mm Δx=0.5 mm Δx=0.25 mm
    present method 54 s 246 s 1 350 s
    conventional bond-based PD method 104 s 522 s 3 277 s
    下载: 导出CSV
  • [1] 胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟[J]. 振动与冲击, 2021, 40(9): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109002.htm

    HU Jiahui, WU Hao, FANG Qin. Numerical simulation of damage and dynamic response of masonryinfilled wall under near zone explosion[J]. Journal of Vibration and Shock, 2021, 40(9): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109002.htm
    [2] 师燕超, 李忠献, 郝洪. 爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706018.htm

    SHI Yanchao, LI Zhongxian, HAO Hong. Numerical analysis of progressive collapse of reinforced concrete frame under blast loading[J]. Journal of PLA University of Science and Technology, 2007, 8(6): 652-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706018.htm
    [3] 顾鑫, 章青. 爆炸荷载作用下大坝破坏分析的数值模拟研究进展[J]. 河海大学学报(自然科学版), 2017, 45(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201701007.htm

    GU Xin, ZHANG Qing. Progress in numerical simulation of dam failure under blast loading[J]. Journal of Hohai University(Natural Sciences), 2017, 45(1): 45-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201701007.htm
    [4] 宁建国, 王猛. 关于计算爆炸力学的进展与现状[J]. 力学与实践, 2012, 34(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201006.htm

    NING Jianguo, WANG Meng. Review on computational explosion mechanics[J]. Mechanics in Engineering, 2012, 34(1): 10-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201006.htm
    [5] RUWAN J, DAVID P T, NIMAL J P. Blast and residual capacity analysis of reinforced concrete framed buildings[J]. Engineering Structures, 2011, 33(12): 3483-3495. doi: 10.1016/j.engstruct.2011.07.011
    [6] XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading[J]. Computers & Structures, 2006, 84(5/6): 431-438.
    [7] 朱劲松, 邢扬. 爆炸荷载作用下城市桥梁动态响应及其损伤过程分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(6): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201506006.htm

    ZHU Jingsong, XING Yang. Dynamic response and damage process analysis of urban bridge subjected to blast load. [J]. Journal of Tianjin University(Science and Technology), 2015, 48(6): 510-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201506006.htm
    [8] 辛春亮, 薛再清. TrueGrid和LS-DYNA动力学数值计算详解[M]. 北京: 机械工业出版社, 2019.

    XIN Chunliang, XUE Zaiqing. TrueGrid and LS-DYNA Dynamics Numerical Calculation Details[M]. Beijing: China Machine Press, 2019. (in Chinese)
    [9] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids. 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [10] SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling[J]. Journal of Elasticity. 2007, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1
    [11] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448-459. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htm

    HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics(PD) method and its application[J]. Advances in Mechanics, 2010, 40(4): 448-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htm
    [12] 周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668. doi: 10.21656/1000-0887.420150

    ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668. (in Chinese) doi: 10.21656/1000-0887.420150
    [13] KILIC B, AGWAI A, MADENCI E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates[J]. Composite Structures, 2009, 90(2): 141-151. doi: 10.1016/j.compstruct.2009.02.015
    [14] 章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟[J]. 力学学报, 2016, 48(1): 64-71. doi: 10.3969/j.issn.1006-6616.2016.01.006

    ZHANG Qing, GU Xin, YU Yangtian. Peridynamics simulation for dynamic response of granular materials under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63. (in Chinese) doi: 10.3969/j.issn.1006-6616.2016.01.006
    [15] 张尚元, 聂玉峰, 李义强. RBF-PU方法求解二维非局部扩散问题和近场动力学问题[J]. 应用数学和力学, 2022, 43(6): 608-618. doi: 10.21656/1000-0887.420295

    ZHANG Shangyuan, NIE Yufeng, LI Yiqiang. The RBF-PU method for solving 2D nonlocal diffusion and peridynamic equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 608-618. (in Chinese) doi: 10.21656/1000-0887.420295
    [16] HAN F, LUBINEAU G, AZDOUD Y. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure[J]. Journal of the Mechanics and Physics of Solids, 2016, 94: 453-472. doi: 10.1016/j.jmps.2016.05.017
    [17] DU Q, ZHOU K. Mathematical analysis for the peridynamic nonlocal continuum theory[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45(2): 217-234. doi: 10.1051/m2an/2010040
    [18] XU F F, GUNZBURGER M, BURKARDT J. A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 307: 117-143. doi: 10.1016/j.cma.2016.04.020
    [19] AZDOUD Y. A hybrid local/non-local framework for the simulation of damage and fracture[D]. PhD Thesis. Thuwal: King Abdullah University of Science and Technology, 2014.
    [20] CHEN X, GUNZBURGER M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9/12): 1237-1250.
    [21] AKSOY H G, SENOCAK E. Discontinuous Galerkin method based on peridynamic theory for linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2011, 88(7): 673-692. doi: 10.1002/nme.3196
    [22] REN B, WU C T, ASKARI E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis[J]. International Journal of Impact Engineering, 2017, 99: 14-25. doi: 10.1016/j.ijimpeng.2016.09.003
    [23] REN B, WU C T, SELESON P, et al. A peridynamic failure analysis of fiber-reinforced composite laminates using finite element discontinuous Galerkin approximations[J]. International Journal of Fracture, 2018, 214(1): 49-68. doi: 10.1007/s10704-018-0317-4
    [24] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014.
    [25] TIAN X C, DU Q. Nonconforming discontinuous Galerkin methods for nonlocal variational problems[J]. SIAM Journal on Numerical Analysis, 2015, 53(2): 762-781. doi: 10.1137/140978831
    [26] HA D, BOBARU F. Studies of dynamic crack propagation and crack branching with peridynamics[J]. International Journal of Fracture, 2010, 162(1): 229-244.
    [27] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158-164.
    [28] KINGERY C N, BULMASH G. Airblast parameters from TNT spherical air burst and hemispherical surface burst: ARBRL-TR-02555[R]. Maryland: Defence Technical Information Center, Ballistic Research Laboratory, Aberdeen Proving Ground, 1984.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  331
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-01-07
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回