留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解

于明惠 王云虎

于明惠, 王云虎. 广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解[J]. 应用数学和力学, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
引用本文: 于明惠, 王云虎. 广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解[J]. 应用数学和力学, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
YU Minghui, WANG Yunhu. Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
Citation: YU Minghui, WANG Yunhu. Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353

广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解

doi: 10.21656/1000-0887.430353
基金项目: 

国家自然科学基金项目 12275172

国家自然科学基金项目 11905124

详细信息
    作者简介:

    于明惠(1997—),女,硕士生(E-mail: yumingh97@163.com)

    通讯作者:

    王云虎(1982—),男,副教授(通讯作者. E-mail: yhwang@ shmtu.edu.cn

  • 中图分类号: O175.29

Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations

  • 摘要: 基于广义(3+1)维KdV方程的双线性形式,得到了方程的lump解、相互作用解及呼吸子解.证明了lump解在空间各个方向上都是有理局域的,并在lump波与线孤子的相互作用过程中观察到了“聚变”和“裂变”现象,最后得到了方程的呼吸子解.
  • 非线性演化方程在非线性科学中有着重要的应用,它为描述流体力学、光纤、等离子体物理等科学领域中的一些非线性现象提供了有效的模型[1-2],例如Korteweg-de Vries(KdV)方程可用于模拟分层流体中的内波和等离子体中的离子声波[3],Kadomtsev-Petviashvili(KP)方程可用于模拟长横向扰动下流体中的弱色散波[4].在孤子理论中,寻找非线性演化方程的精确解一直以来都是众多学者关注的研究热点,如孤立波解、lump解以及怪波解等[5-7]. 目前,人们已经发现了许多有效求解非线性演化方程精确解的方法,如反散射变换[1]、Bäckland变换[8]、Darboux变换[9]和双线性方法[10]等.

    双线性方法是求解非线性演化方程精确解的一种重要方法,该方法的优点在于一旦将给定的非线性演化方程通过变量变换转化为双线性方程,则可通过直接求解双线性方程得到给定的非线性演化方程的精确解.随着双线性方法的广泛应用,众多学者在此基础上提出了各种直接求解方法.2015年,Ma(马文秀)提出了一种直接构造双线性可积方程lump解的方法,得到了(2+1)维KPI方程的lump解[11].Zhang和Chen等[12-13]进一步发展完善了该方法,并利用该方法在KP方程中首次发现了由共振孤子所激发产生的怪波,发现了线孤子和lump波相互作用产生的“聚变”和“裂变”现象.此后, 国内外学者在这一领域开展了广泛的工作,发现了越来越多的lump-扭结解、lump-线孤子解等[14-30].

    高维非线性演化方程由于可以为探究物理现象提供更多的信息而受到广泛关注[31-33].本文主要研究如下的广义(3+1)维KdV方程[34]

    vt+vxxx+α(v1yvx)x+β(1yvxx)+γ(1yvyy)+δ(1yvyz)=0,
    (1)

    v是关于空间变量xyz和时间变量t的函数,αβγδ均为非零参数, 1yv=v dy.方程(1)及其约化方程已被应用于模拟数学物理、非线性光学、流体力学和等离子体物理中的物理现象[34-36].

    δ=0时,方程(1)可退化为如下(2+1)维KdV方程:

    vt+vxxx+α(v1yvx)x+β(1yvxx)+γ(1yvyy)=0.
    (2)

    文献[34]证明了方程(2)是Painlevé可积的,并利用双线性方法得到了其多实孤子解和多复孤子解.文献[37]利用相容tanh展开法得到其共振解、孤子与椭圆余弦波的相互作用解,文献[38]基于双线性方法得到了其lump解、相互作用解和怪波解.

    α=3, β=0和γ=0时,方程(2)进一步转化为

    vt+vxxx+3(v1yvx)x=0.
    (3)

    方程(3)由Boiti等[35]首次给出,可用于描述不可压缩流体的动力学行为并已被证明具有Lax对、无穷多守恒律.文献[39]利用双线性方法、tanh-coth方法以及幂函数法得到了该方程的包括多孤子解在内的行波解.

    y=x时,方程(3)即为经典的(1+1)维KdV方程[40]

    vt+6vvx+vxxx=0.
    (4)

    文献[34]利用Painlevé分析和双线性方法研究了方程(1)可积性检验和多孤子解;文献[41]利用双线性方法和Riemann-theta函数研究了方程(1)的双线性形式、N-孤子解、呼吸子解、混合解和拟周期波解.本文利用方程(1)的双线性形式,通过拟设的方法直接构造其lump解、相互作用解和呼吸子解.本文的主要结构如下:第1节中,通过对双线性方程中的f函数取3种不同的形式,分别得到了方程(1)的lump解、相互作用解和呼吸子解,证明了lump解的局域性,发现了lump波与线孤子的相互作用过程中的“聚变”和“裂变”现象,并利用图形展示了解的动力学特征.第2节中,我们将给出一些结论.

    为得到方程的双线性形式,首先引入势变换:

    v=uy,
    (5)

    方程(1)变为

    uty+uxxxy+αuxxuy+αuxuxy+βuxx+γuyy+δuzy=0.
    (6)

    再利用对数变换

    u=6α(lnf)x,
    (7)

    可得方程(1)的双线性形式:

    (DyDt+D3xDy+βD2x+γD2y+δDzDy)ff=0,
    (8)

    其中f是关于空间变量xyz和时间变量t的函数,D是Hirota双线性算子,其定义为[10]

    DnxDmtFG=(xx)n(tt)mF(x,t)×G(x,t)|x=x,t=t,

    其中nm均为非负整数.

    为得到方程(1)的lump解、相互作用解和呼吸子解,关键是构造双线性方程(8)的解.由此,我们做如下假设:

    f=g2+h2+keη+leη+a11
    (9)

    其中ghη分别具有如下形式:

    {g=a1x+a2y+a3z+a4t+a5,h=a6x+a7y+a8z+a9t+a10,η=k1x+k2y+k3z+k4t,
    (10)

    其中ai(i=1, 2, …, 11),ki(i=1, 2, 3, 4),kl均为待定参数.

    基于文献[11],在函数(9)中取k=0, l=0并将其代入双线性方程(8)中,利用符号计算软件MAPLE,收集变量x, y, z, t的不同幂次系数,求解相应的代数方程组,可得参数a1~a11之间具有如下关系:

    a4=A1a22+a27,a8=A2δ(a22+a27),a11=A3β(a1a7a2a6)2,
    (11)

    其中

    (a1a7a2a6)β0,(a22+a27)δ0,
    (12)

    A1=β(a2a262a1a6a7a21a2)a2γ(a22+a27)+a3δ(a22a27),A2=β(a21a72a1a2a6a26a7)a7γ(a22+a27)+a9(a22+a27),A3=3α(a22+a27)(a21+a67)(a1a2+a6a7).

    由此,方程(1)的解可写为

    v=6α(lnf)xy=12a6[(g2h2+a11)a72gha2]12a1[2gha7a2(h2+a11)]αf2,
    (13)

    其中

    {f=g2+h2A3β(a1a7a2a6)2,g=a1x+a2y+a3zA1a22+a27t+a5,h=a6x+a7yA2δ(a22+a27)z+a9t+a10,
    (14)

    且需满足如下约束条件:

    A3β<0
    (15)

    以确保函数f的正则性及解(13)的解析性.从式(14)中显然可知

    limx2+y2+z2f(x,y,z,t)=,tR,
    (16)

    由此可得解(13)满足

    limx2+y2+z2v(x,y,z,t)=0,tR.
    (17)

    基于以上分析,解(13)在条件(12)、(15)、(16)和(17)下在空间各个方向都是有理局域的,因此被定义为lump解[11].

    为直观地了解解(13)的性质,不失一般性,进一步考虑解(13)在y=0和t=0情形下的动力学特征.取参数α=γ=δ=a5=a6=1,β=-1,a1=a2=a7=a9=2,a3=5,a10=18,则解(13)简化为

    v=384(48x2+40xz325z2+608x+2120z2 416)5(16x2+40xz+125z2+128x400z+1 616)2.
    (18)

    图 1(a)表明解(18)有3个极值点(一个波峰,两个波谷且呈对称形式),利用符号计算软件MAPLE,我们发现波峰和波谷分别位于

    图  1  Lump解(18)的三维图和密度图(y=0, t=0)
    Figure  1.  The 3D plot and the density plot with lump solutions (18)(y=0, t=0)
    (x,z)=(152,145)
    (19)

    (x,z)=(±(21+610)15104010152,25(731510405))
    (20)

    波峰高度为vmax=2/5,波谷高度为vmin=|1/(3(3+10))|=1/(3(3+10))显然,图 2图 1中的lump波具有类似的动力学特性.

    图  2  取参数α=γ=δ=a5=a6=1,β=-1,a1=a2=a7=a9=2,a3=5,a10=18时,lump解(13)的三维图和密度图(x=0, t=0)
    Figure  2.  The 3D plot and the density plot with lump solutions (13) under parameters selected as α=γ=δ=a5=a6=1, β=-1, a1=a2=a7=a9=2, a3=5, a10=18 (x=0, t=0)

    本小节主要构造方程(1)的相互作用解.基于文献[12-13],在式(9)中取l=0,可得

    f=g2+h2+keη+a11,
    (21)

    其中g, h, η与式(10)相同.将拟设解(21)代入双线性方程(8) 中,收集变量x, y, z, t和eη的不同幂次系数,求解相应的代数方程组,得到参数关系如下:

    {a2=0,α=2βa27a27a11k223(a11k222a27)2k22a1,a4=4a3a27δ(a27a11k22)3/2+a21a11βk224(a27a11k22)3/2a27,a6=a1a11k228a7(a27a11k22)3/2,a9=a1a11k42β4a37(a27a11k22)+a21βa7a7γa8δ,k1=2a27a11k22(a11k222a27)k22a1a7,k4=a21k2β(a211k424a47)12a47(a27a11k22)k2γk3δ,
    (22)

    且需满足如下条件:

    a11>0,a27a11k22>0,a1a7k2(a11k222a27)0.
    (23)

    由此,得到方程(1)的解为

    v=6(2a1a2+2a6a7+kk1k2eη)αf6(2ga1+2ha6+kk1eη)(2ga2+2ha7)+kk2eηαf2,
    (24)

    其中

    {g=a1x+a3z4a3a27δ(a27a11k22)3/2+a21a11βk224(a27a11k22)3/2a27t+a5,h=a1a11k228a7(a27a11k22)3/2x+a7y+a8z[a1a11k42β4a37(a27a11k22)a21βa7+a7γ+a8δ]t+a10,η=2a27a11k22(a11k222a27)k22a1a7x+k2y++k3z+     [a21k2β(a211k424a47)12a47(a27a11k22)k2γk3δ]t.
    (25)

    图 3展示了解(24)中lump波与线孤子相互作用过程中产生的“聚变”现象[42-43].参数取值为β=-2, γ=-1, δ=a1=a5=a8=a10=k3=1, a3=5, a7=a11=0.5, k=2, k2=1/3, z=0.“聚变”现象的产生主要由解(24)中的多项式函数和指数函数引起.当k2>0,t→∞时,解(24)受指数函数影响较大,反之t→-∞时,解(24)受多项式函数影响较大.

    图  3  Lump波与线孤子产生的“聚变”现象
    Figure  3.  Fusion phenomena between the lump wave and the one-stripe soliton

    图 3(a)所示,当t=-5时,解(24)包含一个lump波和一个线孤子.随着时间变化,lump波和线孤子逐渐靠近并渐趋融合.当t=6时,lump波完全融入线孤子中并最终消失,见图 3(e).

    k2 < 0,图 4展示了lump波与线孤子相互作用中产生的“裂变”现象[42-43].参数取值为β=-2, γ=-1, δ=a1=a5=a8=a10=k3=1, a3=5, a7=a11=0.5, k=2, k2=-1/3, z=0.从图 4中观察可见,当t=-4时,解(24)只包含一个线孤子,随着时间变化,一个lump波逐渐从线孤子中分离;当t=4时,lump波与线孤子完全分离,即产生所谓“裂变”,见图 4(e).

    图  4  线孤子产生的“裂变”现象
    Figure  4.  Fission phenomena produced by the one-stripe soliton

    为构造方程(1)的呼吸子解,假设[44-47]

    f=k1eξ1+k2cos(ξ2)+k3eξ1,
    (26)

    其中

    ξ1=c1x+c2y+c3z+c4t,ξ2=c5x+c6y+c7z+c8t,
    (27)

    ci(i=1, 2, …, 8), ki(i=1, 2, 3)均为参数.类似于前面的计算,将表达式(26)和(27)代入双线性方程(8)中,求解e±ξ1,cos(ξ1)和sin(ξ1)的不同幂次系数组成的代数方程组,可得

    c1=β3c2α,c4=γc2δc3+β327α2c32,c6=β3c5α,c8=c35αc7δβγ3c5α,
    (28)

    且需满足如下约束:

    αc2c50.
    (29)

    由此,可得方程(1)的如下解:

    v=6(k1c1c2eξ1k2c5c6cosξ2+k3c1c2eξ1)αf6(k1c1eξ1k2c5sinξ2k3c1eξ1)(k1c2eξ1k2c6sinξ2k3c2eξ1)αf2,
    (30)

    其中

    ξ1=β3c2αx+c2y+c3z(γc2+δc3β327α2c32)t,ξ2=c5x+β3c5αy+c7z+(c35αc7δβγ3c5α)t.

    为便于理解呼吸子解(30)的特征,依次取z=0, y=0, x=0,图 57分别展示了呼吸子解在时间t=0时的动力学特性.

    图  5  解(30)的三维图(x-y-v),x曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2
    Figure  5.  The 3D plot (x-y-v), the x-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2
    图  6  解(30)的三维图(x-z-v), z曲线图和密度图,参数取值为α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2
    Figure  6.  The 3D plot (x-z-v), the z-curve plot and the density plot of solution(30) with α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2
    图  7  解(30)的三维图(y-z-v), y曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2
    Figure  7.  The 3D plot (y-z-v), the y-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    本文主要研究了广义(3+1)维KdV方程(1),得到了方程的lump解、相互作用解和呼吸子解.说明了lump解(13)的有理局域性,并通过图 1图 2分别观察到lump解在y=0和x=0时均存在3个极值点.基于相互作用解(24),图 3图 4分别展示了lump波与线孤子相互作用过程中的“聚变”和“裂变”现象.当k2>0时,图 3展示了lump波与线孤子发生碰撞后的相互融合;当k2 < 0时,图 4展示了线孤子分裂为线孤子和lump波的过程.最后,图 6展示了解(30)的周期性传播特征.

  • 图  1  Lump解(18)的三维图和密度图(y=0, t=0)

    Figure  1.  The 3D plot and the density plot with lump solutions (18)(y=0, t=0)

    图  2  取参数α=γ=δ=a5=a6=1,β=-1,a1=a2=a7=a9=2,a3=5,a10=18时,lump解(13)的三维图和密度图(x=0, t=0)

    Figure  2.  The 3D plot and the density plot with lump solutions (13) under parameters selected as α=γ=δ=a5=a6=1, β=-1, a1=a2=a7=a9=2, a3=5, a10=18 (x=0, t=0)

    图  3  Lump波与线孤子产生的“聚变”现象

    Figure  3.  Fusion phenomena between the lump wave and the one-stripe soliton

    图  4  线孤子产生的“裂变”现象

    Figure  4.  Fission phenomena produced by the one-stripe soliton

    图  5  解(30)的三维图(x-y-v),x曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    Figure  5.  The 3D plot (x-y-v), the x-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    图  6  解(30)的三维图(x-z-v), z曲线图和密度图,参数取值为α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2

    Figure  6.  The 3D plot (x-z-v), the z-curve plot and the density plot of solution(30) with α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2

    图  7  解(30)的三维图(y-z-v), y曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    Figure  7.  The 3D plot (y-z-v), the y-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

  • [1] ABLOWITZ M J, CLARKSON P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge: Cambridge University Press, 1991.
    [2] GUO B L. Nonlinear Evolution Equations[M]. Shanghai: Shanghai Science and Technology Education Press, 2004.
    [3] CRIGHTON D G. Application of KdV[J]. Acta Applicandae Mathematicae, 1995, 39: 39-67. doi: 10.1007/BF00994625
    [4] MINZONI A A, SMYTH N F. Evolution of lump solutions for the KP equation[J]. Wave Motion, 1996, 24(3): 291-305. doi: 10.1016/S0165-2125(96)00023-6
    [5] 张诗洁, 套格图桑. (3+1)维变系数Kudryashov-Sinelshchikov(K-S)方程的同宿呼吸波解和高阶怪波解[J]. 应用数学和力学, 2021, 42(8): 852-858. doi: 10.21656/1000-0887.410387

    ZHANG Shijie, TAOGETUSANG. Homoclinic breathing wave solutions and high-order rogue wave solutions of (3+1)-dimensional variable coefficient Kudryashov-Sinelshchikov equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 852-858. (in Chinese)) doi: 10.21656/1000-0887.410387
    [6] 刘静静, 孙峪怀. 一类分数阶修正的不稳定Schrödinger方程的新精确解[J]. 应用数学和力学, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228

    LIU Jingjing, SUN Yuhuai. New exact solutions for a class of fractionally modified unstable Schrödinger equation[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. (in Chinese)) doi: 10.21656/1000-0887.420228
    [7] 郭鹏, 唐荣安, 孙小伟, 等. 非线性弹性杆波动方程的显式精确解[J]. 应用数学和力学, 2022, 43(8): 869-876. 非线性弹性杆波动方程的显式精确解

    GUO Peng, TANG Rongan, SUN Xiaowei, et al. Explicit exact solutions to the wave equation for nonlinear elastic rods[J]. Applied Mathematics and Mechanics, 2022, 43(8): 869-876. (in Chinese)) 非线性弹性杆波动方程的显式精确解
    [8] MIURA M R. Bäcklund Transformation[M]. New York: Springer, 1978.
    [9] MATVEEV V B, SALLE M A. Darboux Transformations and Solitons[M]. Berlin: Springer, 1991.
    [10] HIROTA R. The Direct Method in Soliton Theory[M]. New York: Cambridge University Press, 2004.
    [11] MA W X. Lump solutions to the Kadomtsev-Petviashvili equation[J]. Physics Letters A, 2015, 379(36): 1975-1978. doi: 10.1016/j.physleta.2015.06.061
    [12] ZHANG X E, CHEN Y. Rogue wave and a pair of resonance stripe solitons to a reduced generalized (3+1)-dimensional Jimbo-Miwa equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 24-31. doi: 10.1016/j.cnsns.2017.03.021
    [13] ZHANG X E, CHEN Y, TANG X Y. Rogue wave and a pair of resonance stripe solitons to KP equation[J]. Computers and Mathematics With Applications, 2018, 76(8): 1938-1949. doi: 10.1016/j.camwa.2018.07.040
    [14] REN B, MA W X, YU J. Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation[J]. Nonlinear Dynamics, 2019, 96(1): 717-727. doi: 10.1007/s11071-019-04816-x
    [15] SHI K Z, SHEN S F, REN B, et al. Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation[J]. Communications in Theoretical Physics, 2022, 74(3): 035001. doi: 10.1088/1572-9494/ac53a1
    [16] ZHOU Y, MANUKUREB S, MA W X. Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 68: 56-62. doi: 10.1016/j.cnsns.2018.07.038
    [17] SUN Y L, MA W X, YU J P, et al. Lump and interaction solutions of nonlinear partial differential equations[J]. Modern Physics Letters B, 2019, 33(11): 1950133. doi: 10.1142/S0217984919501331
    [18] WANG H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation[J]. Applied Mathematics Letters, 2018, 85: 27-37. doi: 10.1016/j.aml.2018.05.010
    [19] REN B, MA W X, YU J P. Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation[J]. Computers and Mathematics With Applications, 2019, 77(8): 2086-2095. doi: 10.1016/j.camwa.2018.12.010
    [20] CHEN L, CHEN J C, CHEN Q Y. Mixed lump-soliton solutions to the two-dimensional Toda lattice equation via symbolic computation[J]. Nonlinear Dynamics, 2019, 96(2): 1531-1539. doi: 10.1007/s11071-019-04869-y
    [21] YAN X W, TIAN S F, DONG M J, et al. Dynamics of lump solutions, lump-kink solutions and periodic lump solutions in a (3+1)-dimensional generalized Jimbo-Miwa equation[J]. Waves in Random and Complex Media, 2021, 31(2): 293-304. doi: 10.1080/17455030.2019.1582823
    [22] GUO F, LIN J. Lump, mixed lump-soliton, and periodic lump solutions of a (2+1)-dimensional extended higher-order Broer-Kaup system[J]. Modern Physics Letters B, 2020, 34(33): 2050384. doi: 10.1142/S0217984920503844
    [23] ZHANG H Y, ZHANG Y F. Rational solutions and their interaction solutions for the (2+1)-dimensional dispersive long wave equation[J]. Physica Scripta, 2020, 95(4): 045204. doi: 10.1088/1402-4896/ab4eb3
    [24] WANG M, TIAN B, SUN Y, et al. Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles[J]. Computers and Mathematics With Applications, 2020, 79(3): 576-587. doi: 10.1016/j.camwa.2019.07.006
    [25] LÜ X, CHEN S J. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types[J]. Nonlinear Dynamics, 2021, 103: 947-977. doi: 10.1007/s11071-020-06068-6
    [26] GHANBARI B. Employing Hirota's bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics[J]. Results in Physics, 2021, 29: 104689. doi: 10.1016/j.rinp.2021.104689
    [27] MANAFIAN J, LAKESTANI M. Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44(1): 1052-1070. doi: 10.1002/mma.6811
    [28] WANG Y H. Nonautonomous lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation[J]. Applied Mathematics Letters, 2021, 119: 107201. doi: 10.1016/j.aml.2021.107201
    [29] DONG J J, LI B, YUEN M W. General high-order breather solutions, lump solutions and mixed solutions in the (2+1)-solutions bidirectional Sawada-Kotera equation[J]. Journal of Applied Analysis and Computation, 2021, 11(1): 271-286.
    [30] YUSUF A, SULAIMAN T A, HINCAL E, et al. Lump, its interaction phenomena and conservation laws to a nonlinear mathematical model[J]. Journal of Ocean Engineering and Science, 2022, 7(4): 363-371. doi: 10.1016/j.joes.2021.09.006
    [31] HAN P F, TAOGESTUSANG. Lump-type, breather and interaction solutions to the (3+1)-dimensional generalized KdV-type equation[J]. Modern Physics Letters B, 2020, 34(29): 2050329. doi: 10.1142/S0217984920503297
    [32] HAN P F, ZHANG Y. Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation[J]. Nonlinear Dynamics, 2022, 109(2): 1019-1032. doi: 10.1007/s11071-022-07468-6
    [33] YIN Y H, MA W X, LIU J G, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction[J]. Computational and Applied Mathematics, 2018, 76(6): 1275-1283.
    [34] WAZWAZ A M. Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients[J]. Nuclear Physics B, 2020, 954: 115009. doi: 10.1016/j.nuclphysb.2020.115009
    [35] BOITI M, LEON J, MANNA M, et al. On the spectral transform of Korteweg-de Vries equation in two spatial dimension[J]. Inverse Problems, 1986, 2(3): 271-279. doi: 10.1088/0266-5611/2/3/005
    [36] NAKAMURA Y, TSUKABAYASHI I. Modified Korteweg-de Vries ion-acoustic solitons in a plasma[J]. Journal of Plasma Physics, 1985, 34(3): 401-415. doi: 10.1017/S0022377800002968
    [37] WU H L, CHEN Q Y, SONG J F. Bäcklund transformation, residual symmetry and exact interaction solutions of an extended (2+1)-dimensional Korteweg-de Vries equation[J]. Applied Mathematics Letters, 2022, 124: 107640. doi: 10.1016/j.aml.2021.107640
    [38] YAO Z G, XIE H Y, JIE H. Mixed rational lump-solitary wave solutions to an extended (2+1)-dimensional KdV Equation[J]. Advances in Mathematical Physics, 2021, 2021: 1-9.
    [39] WAZWAZ A M. Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation[J]. Applied Mathematics and Computation, 2008, 204(1): 20-26. doi: 10.1016/j.amc.2008.05.126
    [40] KORTEWEG D J, DE VRIES G. On the change of form of long waves advancing in a rectangualr canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443. doi: 10.1080/14786449508620739
    [41] CHENG C D, TIAN B, ZHANG C R, et al. Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid[J]. Nonlinear Dynamics, 2021, 105(3): 2525-2538. doi: 10.1007/s11071-021-06540-x
    [42] SHEN Y, TIAN B, LIU S H. Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves[J]. Physics Letters A, 2021, 405: 127429. doi: 10.1016/j.physleta.2021.127429
    [43] LIU W, ZHENG X X, WANG C, et al. Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation[J]. Nonlinear Dynamics, 2019, 96(4): 2463-2473. doi: 10.1007/s11071-019-04935-5
    [44] LIU C F, DAI Z D. Exact periodic solitary wave and double periodic wave solutions for the (2+1)-dimensional Korteweg-de Vries equation[J]. Zeitschrift für Naturforschung A, 2009, 64(9/10): 609-614.
    [45] ZHANG D J. Notes on solutions in Wronskian form to soliton equations: Korteweg-de Vries-type[R/OL].[2022-12-18]. https://arxiv.org/pdf/nlin/0603008.pdf.
    [46] JAWORSKI M. Breather-like solutions to the Korteweg-de Vries equation[J]. Physics Letters A, 1984, 104(5): 245-247. doi: 10.1016/0375-9601(84)90060-4
    [47] LIU S Z, ZHANG D J. General description on extended homoclinic orbit solutions of the KdV-type bilinear equations[J]. Modern Physics Letters B, 2021, 35(5): 2150092. doi: 10.1142/S0217984921500925
  • 期刊类型引用(1)

    1. 张晓乐,套格图桑. Jimbo-Miwa-Like方程的Lax可积性研究. 内蒙古师范大学学报(自然科学汉文版). 2024(01): 27-37 . 百度学术

    其他类型引用(0)

  • 加载中
图(7)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  293
  • PDF下载量:  98
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-04
  • 修回日期:  2022-12-18
  • 刊出日期:  2023-08-01

目录

/

返回文章
返回