留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四维不可压缩Navier-Stokes方程的能量守恒

王斌 周艳平 别群益

王斌, 周艳平, 别群益. 四维不可压缩Navier-Stokes方程的能量守恒[J]. 应用数学和力学, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370
引用本文: 王斌, 周艳平, 别群益. 四维不可压缩Navier-Stokes方程的能量守恒[J]. 应用数学和力学, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370
WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370
Citation: WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370

四维不可压缩Navier-Stokes方程的能量守恒

doi: 10.21656/1000-0887.430370
基金项目: 

国家自然科学基金项目 11901346

国家自然科学基金项目 11871305

详细信息
    作者简介:

    王斌(1998—),女,硕士生(E-mail: 2895969956@qq.com)

    别群益(1970—),男,教授,博士,博士生导师(E-mail: qybie@126.com)

    通讯作者:

    周艳平(1980—),女,副教授,博士(通讯作者. E-mail: zhyp5208@163.com)

  • 中图分类号: O175.2

Energy Conservation of the 4 D Incompressible Navier-Stokes Equations

  • 摘要: 研究了四维不可压缩Navier-Stokes方程的能量守恒,当该方程的Leray-Hopf弱解(适当弱解)存在维数小于4的奇异集时,基于Wu在文章中关于四维不可压缩Navier-Stokes方程的部分正则性结果,得到了四维空间中$L^q\left([0, T] ; L^p\left(\mathbb{R}^4\right)\right)$条件,保证该方程能量守恒.
  • 图  1  d=0

    图  2  0 < d < 2

    图  3  d=2

    图  4  2 < d < 4

  • [1] FEFFERMAN C L. Existence and smoothness of the Navier-Stokes equation[J]. The millennium prize problems, 2000, 57 : 67.
    [2] 施惟慧. Navier-Stokes方程稳定性研究(Ⅰ)[J]. 应用数学和力学, 1994, 15(9): 821-822. http://www.applmathmech.cn/article/id/2971

    SHI Weihui. Stability study of Navier-Stokes equation (Ⅰ)[J]. Applied Mathematics and Mechanics, 1994, 15(9): 821-822. (in Chinese) http://www.applmathmech.cn/article/id/2971
    [3] 施惟慧, 方晓佐. Navier-Stokes方程稳定性研究(Ⅱ)[J]. 应用数学和力学, 1994, 15(10): 879-883. http://www.applmathmech.cn/article/id/2957

    SHI Weihui, FANG Xiaozuo. Stability study of Navier-Stokes equation (Ⅱ)[J]. Applied Mathematics and Mechanics, 1994, 15(10): 879-883. (in Chinese) http://www.applmathmech.cn/article/id/2957
    [4] FEIREISL E, NOVOTNY A, PETZELTOVÁ H. On the existence of globally defined weak solutions to the Navier-Stokes equations[J]. Journal of Mathematical Fluid Mechanics, 2001, 3(4): 358-392. doi: 10.1007/PL00000976
    [5] 王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. doi: 10.21656/1000-0887.400279

    WANG Jincheng, QI Jin, WU Chuijie. Modeling and analysis of the incompressible Navier-Stokes equation optimal dynamical system[J]. Applied Mathematics and Mechanics, 2020, 41(1): 1-15. (in Chinese) doi: 10.21656/1000-0887.400279
    [6] ZHANG Z, CHEN Q, MIAO C. On the uniqueness of weak solutions for the 3D Navier-Stokes equations[J]. Annales de l'Institut Henri Poincaré C, 2009, 26(6): 2165-2180. doi: 10.1016/j.anihpc.2009.01.008
    [7] LERAY J. Sur le mouvement d'un liquide visqueux emplissant l'espace[J]. Acta Mathematica, 1934, 63(1): 193-248.
    [8] HOPF E. Vber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet[J]. Mathematische Nachrichten, 1950, 4 (1/6): 213-231.
    [9] MASUDA K. Weak solutions of Navier-Stokes equations[J]. Tohoku Mathematical Journal: Second Series, 1984, 36(4): 623-646.
    [10] FOIAS C. Une remarque sur l'unicité des solutions deséquations de Navier-Stokes en dimension n[J]. Bulletin de la Société Mathématique de France, 1961, 89 : 1-8.
    [11] SERRIN J. The Initial-Value Problem for the Navier-Stokes Equations[M]. Madison: The University of Wisconsion Press, 1963.
    [12] SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2): 535-552. doi: 10.2140/pjm.1976.66.535
    [13] SCHEFFER V. The Navier-Stokes equations in space dimension four[J]. Communications in Mathematical Physics, 1978, 61(1): 41-68. doi: 10.1007/BF01609467
    [14] SCHEFFER V. The Navier-Stokes equations on a bounded domain[J]. Communications in Mathematical Physics, 1980, 73(1): 1-42.
    [15] WU B. Partially regular weak solutions of the Navier-Stokes equations in R 4×[0, ∞][J]. Archive for Rational Mechanics and Analysis, 2021, 239(3): 1771-1808. doi: 10.1007/s00205-020-01603-6
    [16] DONG H, DU D. Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time[J]. Communications in Mathematical Physics, 2007, 273(3): 785-801. doi: 10.1007/s00220-007-0259-6
    [17] WANG Y, WU G. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations[J]. Journal of Differential Equations, 2014, 256(3): 1224-1249.
    [18] ONSAGER L. Statistical hydrodynamics[J]. Il Nuovo Cimento, 1949, 6(2): 279-287.
    [19] CAFFARELLI L, KOHN R, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1982, 35(6): 771-831.
    [20] LIONS J L. Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[J]. Rendiconti del Seminario Matematico della Universita di Padova, 1960, 30 : 16-23.
    [21] LADYŽENSKAJA O A, SOLONNIKOV V A, URAL'CEVA N N. Linear and Quasilinear Equations of Parabolic Type[M]. American Mathematical Soc, 1988.
    [22] KUKAVICA I. Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation[J]. Journal of Dynamics and Differential Equations, 2006, 18(2): 461-482.
    [23] SHINBROT M. The energy equation for the Navier-Stokes system[J]. SIAM Journal on Mathematical Analysis, 1974, 5(6): 948-954.
    [24] LESLIE T M, SHVYDKOY R. Conditions implying energy equality for weak solutions of the Navier-Stokes equations[J]. SIAM Journal on Mathematical Analysis, 2018, 50(1): 870-890.
    [25] SHVYDKOY R. On the energy of inviscid singular flows[J]. Journal of Mathematical Analysis and Applications, 2009, 349(2): 583-595.
    [26] EVANS L C, GARIEPY R F. Measure Theory and Fine Properties of Functions[M]. Routledge, 2018.
  • 加载中
图(4)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  123
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2022-12-24
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回