[1] |
施惟慧, 王曰朋, 沈春. Navier-Stokes方程与Euler方程的稳定性比较[J]. 应用数学和力学, 2006, 27(9): 1101-1107. doi: 10.3321/j.issn:1000-0887.2006.09.013SHI Weihui, WANG Yuepeng, SHEN Chun. Comparison of stability between Navier-Stokes and Euler equations[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1101-1107. (in Chinese) doi: 10.3321/j.issn:1000-0887.2006.09.013
|
[2] |
谢洪燕, 李杰, 贺方毅. 关于轴对称Navier-Stokes方程正则性的一个注记[J]. 应用数学和力学, 2017, 38(3): 276-283. doi: 10.21656/1000-0887.370192XIE Hongyan, LI Jie, HE Fangyi. A note on the regularity of axisymmetric Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 276-283. (in Chinese) doi: 10.21656/1000-0887.370192
|
[3] |
王小霞. 含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性[J]. 应用数学和力学, 2022, 43(4): 416-423. doi: 10.21656/1000-0887.410398WANG Xiaoxia. Uniform asymptotic behavior of solutions of 2D g-Navier-Stokes equations with nonlinear damping[J]. Applied Mathematics and Mechanics, 2022, 43(4): 416-423. (in Chinese) doi: 10.21656/1000-0887.410398
|
[4] |
CHAE D, WENG S. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations[J]. Discrete & Continuous Dynamical Systems, 2016, 36(10): 5267-5285.
|
[5] |
CHAE D. Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations[J]. Communications in Mathematical Physics, 2014, 326(1): 37-48. doi: 10.1007/s00220-013-1868-x
|
[6] |
CHAE D, WOLF J. On Liouville type theorems for the steady Navier-Stokes equations in R3[J]. Journal of Differential Equations, 2016, 261(10): 5541-5560. doi: 10.1016/j.jde.2016.08.014
|
[7] |
GIAQUINTA M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems: Vol 105 [M]. Princeton University Press, 2016.
|
[8] |
SEREGIN G. Remarks on Liouville-type theorems for steady-state Navier-Stokes equations[J]. Petersburg Mathematical Journal, 2019, 30(2): 321-328. doi: 10.1090/spmj/1544
|
[9] |
CHAE D, YONEDA T. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2): 706-710. doi: 10.1016/j.jmaa.2013.04.040
|
[10] |
GALDI G. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems[M]. Springer Science & Business Media, 2011.
|
[11] |
KOZONO H, TERASAWA Y, WAKASUGI Y. A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions[J]. Journal of Functional Analysis, 2017, 272(2): 804-818. doi: 10.1016/j.jfa.2016.06.019
|
[12] |
SEREGIN G, WANG W. Sufficient conditions on Liouville-type theorems for the 3D steady Navier-Stokes equations[J]. Petersburg Mathematical Journal , 2020, 31(2): 387-393. doi: 10.1090/spmj/1603
|
[13] |
SCHULZ S. Liouville-type theorem for the stationary equations of magnetohydrodynamics[J]. Acta Mathematica Scientia, 2019, 39(2): 491-497. doi: 10.1007/s10473-019-0213-7
|
[14] |
YUAN B, XIAO Y. Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations[J]. Journal of Mathematical Analysis and Applications, 2020, 491(2): 124343. doi: 10.1016/j.jmaa.2020.124343
|
[15] |
周艳平, 别群益, 王其如, 等. 三维稳态MHD方程和Hall-MHD方程的Liouville型定理[J]. 中国科学: 数学, 2023, 53(3): 431-440. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202303002.htmZHOU Yanping, BIE Qunyi, WANG Qiru, et al. On Liouville type theorems for three-dimensional stationary MHD and Hall-MHD equations[J]. Scientia Sinica: Mathematica, 2023, 53(3): 431-440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202303002.htm
|
[16] |
CHEN X, LI S, WANG W. Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations[J]. Journal of Nonlinear Science, 2022, 32(1): 1-20. doi: 10.1007/s00332-021-09760-y
|
[17] |
STEIN E M. Singular Integrals and Differentiability Properties of Functions[M]. Princeton University Press, 1970.
|