留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多翼裂缝压裂偏心井半解析模型及其渗流特征

姬安召

姬安召. 多翼裂缝压裂偏心井半解析模型及其渗流特征[J]. 应用数学和力学, 2023, 44(10): 1200-1212. doi: 10.21656/1000-0887.430395
引用本文: 姬安召. 多翼裂缝压裂偏心井半解析模型及其渗流特征[J]. 应用数学和力学, 2023, 44(10): 1200-1212. doi: 10.21656/1000-0887.430395
JI Anzhao. Semi-Analytical Model and Seepage Characteristics of Multi-Wing Fracture Off-Center Wells[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1200-1212. doi: 10.21656/1000-0887.430395
Citation: JI Anzhao. Semi-Analytical Model and Seepage Characteristics of Multi-Wing Fracture Off-Center Wells[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1200-1212. doi: 10.21656/1000-0887.430395

多翼裂缝压裂偏心井半解析模型及其渗流特征

doi: 10.21656/1000-0887.430395
基金项目: 

国家自然科学基金项目 42162015

甘肃省科技计划项目 23YFGM001

甘肃省科技计划项目 22JR11RM169

详细信息
    作者简介:

    姬安召(1983—),男,副教授(E-mail: jianzhao_831024@163.com)

  • 中图分类号: TE312

Semi-Analytical Model and Seepage Characteristics of Multi-Wing Fracture Off-Center Wells

  • 摘要: 考虑压裂多翼裂缝偏心井的实际情况,建立了多翼裂缝偏心井的数学模型. 采用Laplace变换和压降叠加原理得到Laplace空间多翼裂缝压裂偏心井井底压力的半解析解. 采用非均匀流量法,对井底压力的半解析解进行离散. 结合Stehfest数值反演获得实空间井底压力的数值解和产量分布. 借助SAPHIR试井分析软件建立了储层的数值试井模型并进行了数值离散计算. 将计算结果与该文的半解析模型计算结果进行了对比,验证了该文模型的正确性. 结果表明,多翼裂缝压裂偏心井井底压力变化可划分为8个主要流动阶段. 最后讨论了裂缝的无因次导流能力、裂缝的不对称因子和井的偏心距对井底压力变化和产量分布特征的影响.
  • 图  1  不对称裂缝压裂偏心直井的物理模型

    Figure  1.  The physical model for the off-center vertical well with asymmetric fracture

    图  2  裂缝单元离散方案

    Figure  2.  The fracture element discretization scheme

    图  3  压裂偏心井的数值物理模型

    Figure  3.  The numerical physical model of the fractured off-center well

    图  4  井底压力对比曲线

    Figure  4.  Wellbore pressure comparison curves

    图  5  无因次裂缝导流能力对无因次井底压力、压力导数曲线的影响

    Figure  5.  Effects of the dimensionless fracture conductivity on dimensionless bottom hole pressure and pressure derivative curves

    图  6  裂缝无因次导流能力对无因次产量分布的影响

    Figure  6.  Rate distribution curves influenced by the dimensionless conductivity of the fracture

    图  7  不同偏心距对无因次井底压力与压力导数曲线的影响

    Figure  7.  Pressure transient curves influenced by the distance between the wellbore and the reservoir center

    图  8  不对称因子对无因次压力与压力导数曲线的影响

    Figure  8.  Pressure transient curves influenced by the asymmetry factor

  • [1] 郭旭升, 蔡勋育, 刘金连, 等. 中国石化"十三五"天然气勘探进展与前景展望[J]. 天然气工业, 2021, 41(8): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108003.htm

    GUO Xusheng, CAI Xunyu, LIU Jinlian, et al. Natural gas exploration progress of SINOPEC during the 13th Five-Year Plan and prospect forecast during the 14th Five-Year Plan[J]. Natural Gas Industry, 2021, 41(8): 12-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108003.htm
    [2] 何江川, 余浩杰, 何光怀, 等. 鄂尔多斯盆地长庆气区天然气开发前景[J]. 天然气工业, 2021, 41(8): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108004.htm

    HE Jiangchuan, YU Haojie, HE Guanghuai, et al. Natural gas development prospect in Changqing gas province of the Ordos Basin[J]. Natural Gas Industry, 2021, 41(8): 23-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108004.htm
    [3] 马新华. 非常规天然气"极限动用"开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htm

    MA Xinhua. "Extreme utilization" development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htm
    [4] 王继平, 张城玮, 李建阳, 等. 苏里格气田致密砂岩气藏开发认识与稳产建议[J]. 天然气工业, 2021, 41(2): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102017.htm

    WANG Jiping, ZHANG Chengwei, LI Jianyang, et al. Tight sandstone gas reservoirs in the Sulige Gas Field: development understandings and stable-production proposals[J]. Natural Gas Industry, 2021, 41(2): 100-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102017.htm
    [5] 贾爱林, 何东博, 位云生, 等. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101002.htm

    JIA Ailin, HE Dongbo, WEI Yunsheng, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Natural Gas Geoscience, 2021, 32(1): 17-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101002.htm
    [6] 欧阳伟平, 孙贺东, 张冕. 考虑应力敏感的致密气多级压裂水平井试井分析[J]. 石油学报, 2018, 39(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805008.htm

    OUYANG Weiping, SUN Hedong, ZHANG Mian. Well test analysis for multistage fractured horizontal wells in tight gas reservoir considering stress sensitivity[J]. Acta Petrolei Sinica, 2018, 39(5): 570-577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805008.htm
    [7] CINCO-LEY H, MENG H Z. Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, 1988.
    [8] HUANG T, GUO X, CHEN F. Modeling transient pressure behavior of a fractured well for shale gas reservoirs based on the properties of nanopores[J]. Journal of Natural Gas Science and Engineering, 2015, 23(1): 387-398.
    [9] WANG L, WANG X, DING X, et al. Rate decline curves analysis of a vertical fractured well with fracture face damage[J]. Journal of Energy Resources Technology, 2012, 134(3): 1-9.
    [10] WANG L, WANG X. Type curves analysis for asymmetrically fractured wells[J]. Journal of Energy Resources Technology, 2014, 136(2): 1-8.
    [11] CRAWFORD P B, LANDRUM B L. Effect of unsymmetrical vertical fractures on production capacity[J]. American Invitational Mathematics Examination, 1955, 204(1): 251-254.
    [12] BENNETT C O, ROSATO N D, REYNOLDS A C, et al. Influence of fracture heterogeneity and wing length on the response of vertically fractured wells[J]. Society of Petroleum Engineers Journal, 1983, 23(2): 219-230. doi: 10.2118/9886-PA
    [13] BERUMEN S, TIAB D, RODRIGUEZ F. Constant rate solutions for a fractured well with an asymmetric fracture[J]. Journal of Petroleum Science and Engineering, 2000, 25(1): 49-58.
    [14] NARASIMHAN T N, PALEN W A. A purely numerical approach for analyzing fluid flow to a well intercepting a vertical fracture[C]//SPE California Regional Meeting. Ventura, California, 1979.
    [15] RODRIGUEZ F, CINCO-LEY H, SAMANIEGO-V F. Evaluation of fracture asymmetry of finite-conductivity fracturedwells[J]. SPE Production Engineering, 1992, 7(2): 233-239. doi: 10.2118/20583-PA
    [16] TIAB D, LU J, NGUYEN H, et al. Evaluation of fracture asymmetry of finite-conductivity fracturedwells[J]. Journal of Energy Resources Technology, 2010, 132(1): 012901. doi: 10.1115/1.4000700
    [17] WANG L, WANG X, LI J, et al. Simulation of pressure transient behavior for asymmetrically finite-conductivity fractured wells in coal reservoirs[J]. Transport in Porous Media, 2013, 97(3): 353-372. doi: 10.1007/s11242-013-0128-z
    [18] WANG L, XUE L. A Laplace-transform boundary element model for pumping tests in irregularly shaped double-porosity aquifers[J]. Journal of Hydrology, 2018, 567(1): 712-720.
    [19] WANG L, DAI C, LI X, et al. Pressure transient analysis for asymmetrically fractured wells in dual-permeability organic compound reservoir of hydrogen and carbon[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5254-5261. doi: 10.1016/j.ijhydene.2018.08.082
    [20] ZHAO Y, SHAN B, ZHANG L. Pressure dynamics of asymmetrically fractured wells in an arbitrarily shaped reservoir[J]. Journal of Hydrodynamics, 2019, 31(4): 767-777. doi: 10.1007/s42241-018-0166-7
    [21] ROSA A J, MAGALHAES A A C, HORNE R N. Pressure transient behavior in reservoirs with an internal circular discontinuity[J]. Society of Petroleum Engineers Journal, 1996, 1(1): 83-92.
    [22] DENG Q, NIE R, JIA Y, et al. Pressure transient behavior of a fractured well in multi-region composite reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 158(1): 535-553.
    [23] 姜瑞忠, 郜益华, 孙召勃, 等. 双重介质复合油藏偏心井试井分析[J]. 新疆石油地质, 2016, 37(3): 327-331. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201603017.htm

    JIANG Ruizhong, GAO Yihua, SUN Zhaobo, et al. Off-center well test analysis for composite dual-porosity reservoirs[J]. Xinjiang Petroleum Geology, 2016, 37(3): 327-331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201603017.htm
    [24] 姜瑞忠, 高岳, 孙召勃, 等. 双重介质低渗油藏偏心压裂直井井底压力特征[J]. 断块油气田, 2020, 27(6): 778-783. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006022.htm

    JIANG Ruizhong, GAO Yue, SUN Zhaobo, et al. Bottom pressure characteristics for eccentric fracture vertical well in dual-medium low-permeability reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 778-783. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006022.htm
    [25] OZKAN E, RAGHAVAN R. New solutions for well-test-analysis problems, part Ⅲ: additional algorithms[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 1994.
    [26] OZKAN E, RAGHAVAN R. New solutions for well-test-analysis problems, part Ⅰ: analytical considerations[J]. SPE Formation Evaluation, 1991, 6(3): 359-368.
    [27] XU Y, LI X, LIU Q. Pressure performance of multi-stage fractured horizontal well with stimulated reservoir volume and irregular fractures distribution in shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103209.
    [28] GUO J, WANG H, ZHANG L. Transient pressure and production dynamics of multi-stage fractured horizontal wells in shale gas reservoirs with stimulated reservoir volume[J]. Journal of Natural Gas Science and Engineering, 2016, 35(4): 425-443.
    [29] CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2nd ed. London: Oxford University Press, 1959.
    [30] PEACEMAN D W. Interpretation of wellblock pressures in numerical reservoir simulation part 3: off-center and multiple wells within a wellblock[J]. SPE Reservoir Engineering, 1990, 5(2): 227-232.
    [31] ZHAO Y, ZHANG L, FENG G, et al. Performance analysis of fractured wells with stimulated reservoir volume in coal seam reservoirs[J]. Oil and Gas Science and Technology, 2016, 71(1): 1-8.
    [32] CHEN Z, LIAO X, ZHAO X, et al. A semi-analytical mathematical model for transient pressure behavior of multiple fractured vertical well in coal reservoirs incorporating with diffusion, adsorption, and stress-sensitivity[J]. Journal of Natural Gas Science and Engineering, 2016, 29(1): 570-582.
    [33] 姬安召, 王玉风, 张光生. 不对称裂缝单井渗流模型的Green函数构造方法[J]. 应用数学和力学, 2022, 43(4): 424-434. doi: 10.21656/1000-0887.420237

    JI Anzhao, WANG Yufeng, ZHANG Guangsheng. A Green's function construction method of the single well seepage model for asymmetric fractures[J]. Applied Mathematics and Mechanics, 2022, 43(4): 424-434. (in Chinese) doi: 10.21656/1000-0887.420237
    [34] 刘启国, 徐有杰, 刘义成, 等. 夹角断层多段压裂水平井试井求解新方法[J]. 应用数学和力学, 2018, 39(5): 558-567. doi: 10.21656/1000-0887.380297

    LIU Qiguo, XU Youjie, LIU Yicheng, et al. A new well test analysis method for multi-stage fractured horizontal wells with angle faults[J]. Applied Mathematics and Mechanics, 2018, 39(5): 558-567. (in Chinese) doi: 10.21656/1000-0887.380297
    [35] VAN EVERDINGENA F, HURST W. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949, 1(12): 305-324.
  • 加载中
图(8)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  150
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-03-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回