Study on Impact Resistance of Shape Memory Alloy Honeycomb Structures
-
摘要: 形状记忆合金(shape memory alloy,SMA)在外载荷作用下可发生伪塑性变形,利用这一特性设计了可重复使用的冲击吸能结构. 基于经典的形状记忆合金本构模型,建立了薄壁结构有限元模型,分析了不同类型蜂窝结构在不同冲击速度下的变形模式和能量吸收等动力特性,得到了具有最优能量吸收性能的形状记忆合金结构. 此外,对比形状记忆合金和传统金属铝蜂窝结构的吸能性能发现,在不同速度冲击下,不同结构形式的形状记忆合金蜂窝同铝蜂窝在能量吸收方面具有较大差异,最优结构发生改变. 该文成果可为形状记忆合金抗冲击蜂窝结构的选型和设计提供参考.Abstract: The shape memory alloy (SMA) can deform pseudo-plastically under external load, based on which a reusable impact energy absorption structure was designed. According to the classical SMA constitutive model, the finite element model for thin-wall structures was established, and the dynamic characteristics such as deformation modes and energy absorption of different forms of honeycomb structures under different impacting velocities, were analyzed, and the optimal energy absorption performance of the SMA structures was obtained. In addition, through comparison of the energy absorption performance of the SMA honeycomb with that of the aluminum honeycomb, the energy absorption of the SMA honeycomb with different structure configurations was different from that of the aluminum honeycomb under different-velocity impacts, with the optimal structure changes. The work provides a reference for the selection and design of the SMA honeycomb structures.
-
Key words:
- shape memory alloy /
- honeycomb structure /
- ABAQUS /
- deformation mode /
- energy absorption
-
表 1 各个蜂窝结构的几何构型与具体参数
Table 1. The geometric configuration and specific parameters of each honeycomb structure
表 2 形状记忆合金材料参数
Table 2. Material parameters of SMA
material parameter value Austenite elastic stiffness EA/GPa 70 Martensite elastic stiffness EM/GPa 30 Poisson’s ratio (equal for both phases) υ 0.33 thermal expansion coefficient for Austenite αA/K-1 2.2×10-5 thermal expansion coefficient for Martensite αM/K-1 2.2×10-5 Martensitic start temperature M0s/K 291 Martensitic finish temperature M0f/K 271 Austenitic start temperature A0s/K 295 Austenitic finish temperature A0f/K 315 maximum transformation strain H 0.05 stress influence coefficient for Austenite ρΔsA/(MPa·K-1) -0.35 stress influence coefficient for Martensite ρΔsM/(MPa·K-1) -0.35 表 3 不同单元数模型变形图
Table 3. Deformation diagrams of the model with different numbers of elements
表 4 能量吸收误差
Table 4. Energy absorption errors
N engergy absorption value at 70% strain E/J error ε/% 5×103 2 717.74 15.15 1×104 2 411.24 2.17 2×104 2 272.02 3.37 4×104 2 360.10 0 表 5 10 m/s下的蜂窝结构变形图
Table 5. Deformation diagrams of the honeycomb structure at 10 m/s
表 6 100 m/s下的蜂窝结构变形图
Table 6. Deformation diagrams of the honeycomb structure at 100 m/s
-
[1] LAKES R. Foam Structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040. doi: 10.1126/science.235.4792.1038 [2] THEOCARIS P S, STAVROULAKIS G E, PANAGIOTOPOULOS P D. Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach[J]. Archive of Applied Mechanics, 1997, 67(4): 274-286. doi: 10.1007/s004190050117 [3] QI C, JIANG F, ALEX R, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites (Part B): Engineering, 2020, 197: 108117. doi: 10.1016/j.compositesb.2020.108117 [4] THOMAS T, TIWARI G. Crushing behavior of honeycomb structure: a review[J]. International Journal of Crashworthiness, 2019, 24(5): 555-579. doi: 10.1080/13588265.2018.1480471 [5] 王永福, 漆文凯, 沈承. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348WANG Yongfu, QI Wenkai, SHEN Cheng. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348 [6] LIANG H X, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2019, 367: 9-16. doi: 10.1016/j.cej.2019.02.121 [7] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. (in Chinese) doi: 10.21656/1000-0887.430061 [8] SHAW J A, GRUMMON D S, FOLTZ J. Superelastic NiTi honeycombs: fabrication and experiments[J]. Smart Materials and Structures, 2007, 16(1): S170-S178. doi: 10.1088/0964-1726/16/1/S17 [9] XIONG Z W, LI M, HAO S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39915-39924. [10] HASSAN M R, SCARPA F, RUZZENE M, et al. Smart shape memory alloy chiral honeycomb[J]. Materials Science & Engineering A, 2008, 481/482: 654-657. [11] WATKINS R T, SHAW J A, TRIANTAFYLLIDIS N, et al. Design study of shape memory alloy honeycombs for energy absorption[C]//ASME Conference on SMART Materials, Adaptive Structures and Intelligent Systems. Scottsdale, AZ, USA, 2011: 593-602. [12] QIDWAI M A, LAGOUDAS D C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms[J]. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1123-1168. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N [13] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs: a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8 [14] 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2): 181-187.LU Zixing, LI Kang. Numerical simulation of four-sided chiral honeycomb dynamic crushing behavior[J]. Explosion and Shock Waves, 2014, 34(2): 181-187. (in Chinese) [15] ALDERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2009, 70(7): 1042-1048. [16] 贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003YUN Hao, DENG Zichen, ZHU Zhiwei. Bandgap properties of periodic 4-point star-shaped honeycomb materials with negative Poisson's ratios[J]. Applied Mathematics and Mechanics, 2015, 36(8): 814-820. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.08.003 [17] WEI L L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength[J]. Thin-Walled Structures, 2020, 149: 106623. doi: 10.1016/j.tws.2020.106623 [18] 董琳, 彭瑞岩, 张琪, 等. 六边形形状记忆合金蜂窝材料面内变形特性的研究[J]. 山西建筑, 2019, 45(14): 84-85.DONG Lin, PENG Ruiyan, ZHANG Qi, et al. Research on the in-plane deformation characteristics of hexagonal shape memory alloy honeycombs[J]. Shanxi Architecture, 2019, 45(14): 84-85. (in Chinese) [19] 周世奇, 侯秀慧, 邓子辰. 一般宏观应力状态下凹角蜂窝结构的屈曲性能分析[J]. 应用数学和力学, 2023, 44(1): 12-24. doi: 10.21656/1000-0887.430202ZHOU Shiqi, HOU Xiuhui, DENG Zichen. Buckling analysis of re-entrant honeycomb structures under general macroscopic stress states[J]. Applied Mathematics and Mechanics, 2023, 44(1): 12-24. (in Chinese) doi: 10.21656/1000-0887.430202