留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆合金蜂窝结构抗冲击性能研究

李金矿 万文玉 刘闯

李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004
引用本文: 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004
LI Jinkuang, WAN Wenyu, LIU Chuang. Study on Impact Resistance of Shape Memory Alloy Honeycomb Structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004
Citation: LI Jinkuang, WAN Wenyu, LIU Chuang. Study on Impact Resistance of Shape Memory Alloy Honeycomb Structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004

形状记忆合金蜂窝结构抗冲击性能研究

doi: 10.21656/1000-0887.440004
基金项目: 

国家自然科学基金 12102173

详细信息
    作者简介:

    李金矿(2002—),男(E-mail: 202021024302@njtech.edu.cn)

    通讯作者:

    刘闯(1992—),男,副教授,博士,硕士生导师(通讯作者. E-mail: liuc@njtech.edu.cn)

  • 中图分类号: TU502

Study on Impact Resistance of Shape Memory Alloy Honeycomb Structures

  • 摘要: 形状记忆合金(shape memory alloy,SMA)在外载荷作用下可发生伪塑性变形,利用这一特性设计了可重复使用的冲击吸能结构. 基于经典的形状记忆合金本构模型,建立了薄壁结构有限元模型,分析了不同类型蜂窝结构在不同冲击速度下的变形模式和能量吸收等动力特性,得到了具有最优能量吸收性能的形状记忆合金结构. 此外,对比形状记忆合金和传统金属铝蜂窝结构的吸能性能发现,在不同速度冲击下,不同结构形式的形状记忆合金蜂窝同铝蜂窝在能量吸收方面具有较大差异,最优结构发生改变. 该文成果可为形状记忆合金抗冲击蜂窝结构的选型和设计提供参考.
  • 图  1  形状记忆合金用户子程序计算流程

    Figure  1.  The UMAT computation flow

    图  2  蜂窝结构的有限元模型

    Figure  2.  The element model for the honeycomb structure

    图  3  蜂窝结构变形图

    Figure  3.  Deformation diagram of the honeycomb structure

    图  4  有限元结果与参考文献实验结果应力-应变曲线比较

    Figure  4.  Comparison of stress-strain curves between finite element results and experimental results in reference

    图  5  蜂窝结构能量吸收-应变曲线

    Figure  5.  Energy absorption-strain curves of the honeycomb structure

    图  6  蜂窝结构60%应变比吸能数值

    Figure  6.  Energy absorption values of 60% strain ratio of the honeycomb structure

    图  7  能量吸收提升倍数

    Figure  7.  Energy absorption growth factor

    表  1  各个蜂窝结构的几何构型与具体参数

    Table  1.   The geometric configuration and specific parameters of each honeycomb structure

    表  2  形状记忆合金材料参数

    Table  2.   Material parameters of SMA

    material parameter value
    Austenite elastic stiffness EA/GPa 70
    Martensite elastic stiffness EM/GPa 30
    Poisson’s ratio (equal for both phases) υ 0.33
    thermal expansion coefficient for Austenite αA/K-1 2.2×10-5
    thermal expansion coefficient for Martensite αM/K-1 2.2×10-5
    Martensitic start temperature M0s/K 291
    Martensitic finish temperature M0f/K 271
    Austenitic start temperature A0s/K 295
    Austenitic finish temperature A0f/K 315
    maximum transformation strain H 0.05
    stress influence coefficient for Austenite ρΔsA/(MPa·K-1) -0.35
    stress influence coefficient for Martensite ρΔsM/(MPa·K-1) -0.35
    下载: 导出CSV

    表  3  不同单元数模型变形图

    Table  3.   Deformation diagrams of the model with different numbers of elements

    表  4  能量吸收误差

    Table  4.   Energy absorption errors

    N engergy absorption value at 70% strain E/J error ε/%
    5×103 2 717.74 15.15
    1×104 2 411.24 2.17
    2×104 2 272.02 3.37
    4×104 2 360.10 0
    下载: 导出CSV

    表  5  10 m/s下的蜂窝结构变形图

    Table  5.   Deformation diagrams of the honeycomb structure at 10 m/s

    表  6  100 m/s下的蜂窝结构变形图

    Table  6.   Deformation diagrams of the honeycomb structure at 100 m/s

  • [1] LAKES R. Foam Structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040. doi: 10.1126/science.235.4792.1038
    [2] THEOCARIS P S, STAVROULAKIS G E, PANAGIOTOPOULOS P D. Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach[J]. Archive of Applied Mechanics, 1997, 67(4): 274-286. doi: 10.1007/s004190050117
    [3] QI C, JIANG F, ALEX R, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites (Part B): Engineering, 2020, 197: 108117. doi: 10.1016/j.compositesb.2020.108117
    [4] THOMAS T, TIWARI G. Crushing behavior of honeycomb structure: a review[J]. International Journal of Crashworthiness, 2019, 24(5): 555-579. doi: 10.1080/13588265.2018.1480471
    [5] 王永福, 漆文凯, 沈承. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348

    WANG Yongfu, QI Wenkai, SHEN Cheng. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348
    [6] LIANG H X, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2019, 367: 9-16. doi: 10.1016/j.cej.2019.02.121
    [7] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061

    LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. (in Chinese) doi: 10.21656/1000-0887.430061
    [8] SHAW J A, GRUMMON D S, FOLTZ J. Superelastic NiTi honeycombs: fabrication and experiments[J]. Smart Materials and Structures, 2007, 16(1): S170-S178. doi: 10.1088/0964-1726/16/1/S17
    [9] XIONG Z W, LI M, HAO S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39915-39924.
    [10] HASSAN M R, SCARPA F, RUZZENE M, et al. Smart shape memory alloy chiral honeycomb[J]. Materials Science & Engineering A, 2008, 481/482: 654-657.
    [11] WATKINS R T, SHAW J A, TRIANTAFYLLIDIS N, et al. Design study of shape memory alloy honeycombs for energy absorption[C]//ASME Conference on SMART Materials, Adaptive Structures and Intelligent Systems. Scottsdale, AZ, USA, 2011: 593-602.
    [12] QIDWAI M A, LAGOUDAS D C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms[J]. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1123-1168. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
    [13] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs: a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
    [14] 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2): 181-187.

    LU Zixing, LI Kang. Numerical simulation of four-sided chiral honeycomb dynamic crushing behavior[J]. Explosion and Shock Waves, 2014, 34(2): 181-187. (in Chinese)
    [15] ALDERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2009, 70(7): 1042-1048.
    [16] 贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015, 36(8): 814-820. doi: 10.3879/j.issn.1000-0887.2015.08.003

    YUN Hao, DENG Zichen, ZHU Zhiwei. Bandgap properties of periodic 4-point star-shaped honeycomb materials with negative Poisson's ratios[J]. Applied Mathematics and Mechanics, 2015, 36(8): 814-820. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.08.003
    [17] WEI L L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength[J]. Thin-Walled Structures, 2020, 149: 106623. doi: 10.1016/j.tws.2020.106623
    [18] 董琳, 彭瑞岩, 张琪, 等. 六边形形状记忆合金蜂窝材料面内变形特性的研究[J]. 山西建筑, 2019, 45(14): 84-85.

    DONG Lin, PENG Ruiyan, ZHANG Qi, et al. Research on the in-plane deformation characteristics of hexagonal shape memory alloy honeycombs[J]. Shanxi Architecture, 2019, 45(14): 84-85. (in Chinese)
    [19] 周世奇, 侯秀慧, 邓子辰. 一般宏观应力状态下凹角蜂窝结构的屈曲性能分析[J]. 应用数学和力学, 2023, 44(1): 12-24. doi: 10.21656/1000-0887.430202

    ZHOU Shiqi, HOU Xiuhui, DENG Zichen. Buckling analysis of re-entrant honeycomb structures under general macroscopic stress states[J]. Applied Mathematics and Mechanics, 2023, 44(1): 12-24. (in Chinese) doi: 10.21656/1000-0887.430202
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  117
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-07-10
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回