留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非Lipschitz条件下高维McKean-Vlasov随机微分方程解的存在唯一性

马丽 孙芳芳

马丽, 孙芳芳. 非Lipschitz条件下高维McKean-Vlasov随机微分方程解的存在唯一性[J]. 应用数学和力学, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010
引用本文: 马丽, 孙芳芳. 非Lipschitz条件下高维McKean-Vlasov随机微分方程解的存在唯一性[J]. 应用数学和力学, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010
MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010
Citation: MA Li, SUN Fangfang. Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1272-1290. doi: 10.21656/1000-0887.440010

非Lipschitz条件下高维McKean-Vlasov随机微分方程解的存在唯一性

doi: 10.21656/1000-0887.440010
基金项目: 

国家自然科学基金(地区科学基金)项目 11861029

海南省高层次人才项目 120RC589

详细信息
    作者简介:

    马丽(1979—), 女, 副教授, 博士(E-mail: malihnsd@163.com)

    通讯作者:

    孙芳芳(1998—), 女, 硕士生(通讯作者. E-mail: sunff1207@163.com)

  • 中图分类号: O211.63

Existence and Uniqueness of the Solutions to High-Dimensional McKean-Vlasov SDEs Under Non-Lipschitz Conditions

  • 摘要: 研究了一类漂移系数不连续的高维McKean-Vlasov随机微分方程及相应的粒子系统解的存在唯一性. 在漂移系数关于空间变量逐段Lipschitz连续的条件下,首先利用Zvonkin变换将方程转换为漂移系数为Lipschitz连续的McKean-Vlasov随机微分方程,变换后的方程存在唯一解. 然后由变换函数的性质可得逆函数的存在性和Lipschitz连续性. 最后由Itô公式及逆函数的性质可得原来的McKean-Vlasov随机微分方程及相应的粒子系统解的存在唯一性.
  • [1] LEOBACHER G, SZOLGYENYI M. A numerical method for SDEs with discontinuous drift[J]. BIT Numerical Mathematics, 2016, 56 (1): 151-162. doi: 10.1007/s10543-015-0549-x
    [2] LEOBACHER G, SZOLGYENYI M. A strong order 1/2 method for multidimensional SDE with discontinuous drift[J]. The Annals of Applied Probablity, 2015, 27 (4): 2383-2418.
    [3] 马丽, 马瑞楠. 一类随机泛函微分方程带随机步长的EM逼近的渐近稳定[J]. 应用数学和力学, 2019, 40 (1): 97-107. doi: 10.21656/1000-0887.390057

    MA Li, MA Ruinan. Almost sure asymptotic stability of Euler-Maruyama method with random variable stepsizes for stochastic functional differential equations[J]. Applied Mathematics and Mechanics, 2019, 40 (1): 97-107. (in Chinese) doi: 10.21656/1000-0887.390057
    [4] 梁青. 一类带扰动的随机脉冲泛函微分方程解的渐近性[J]. 应用数学和力学, 2022, 43 (9): 1034-1044. doi: 10.21656/1000-0887.420267

    LIANG Qing. Asymptotic properties of the solution to a class of perturbed stochastic impulsive functional differential equations[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 1034-1044. (in Chinese) doi: 10.21656/1000-0887.420267
    [5] 李光洁, 杨启贵. G-Brown运动驱动的非线性随机时滞微分方程的稳定化[J]. 应用数学和力学, 2021, 42 (8): 841-851. doi: 10.21656/1000-0887.410332

    LI Guangjie, YANG Qigui. Stabilization of nonlinear stochastic delay differential equation driven by G-Brownian motion[J]. Applied Mathematics and Mechanics, 2021, 42 (8): 841-851. (in Chinese) doi: 10.21656/1000-0887.410332
    [6] SCHEUTZOW M. Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations[J]. Journal of the Australian Mathematical Society, 1987, 43 (2): 246-256. doi: 10.1017/S1446788700029384
    [7] LEOBACHER G, REISINGER C, STOCKINGER W. Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift[J]. BIT Numerical Mathematics, 2022, 62 (4): 1505-1549. doi: 10.1007/s10543-022-00920-4
    [8] ROCKNER M, ZHANG X. Well-posedness of distribution dependent SDEs with singular drifts[J]. Bernoulli, 2021, 27 (2): 1131-1158.
    [9] HUANG X, WANG F. Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise[J]. Journal of Mathematical Analysis and Applications, 2020, 154 (1): 126301.
    [10] WANG F. Distribution dependent SDEs for Landau type equations[J]. Stochastic Processes and Their Applications, 2018, 128 (2): 595-621.
    [11] CHAUDRU DE RAYNAL P E. Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift[J]. Stochastic Processes and Their Applications, 2020, 130 (1): 79-107.
    [12] REN P. Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang's Harnack inequality[J]. Stochastic Processes and Their Applications, 2023, 156 : 291-311.
    [13] ZHAO G. On distribution dependent SDEs with singular drifts[R/OL].[2023-03-11]. https://arxiv.org/abs/2003.04829v3.
    [14] HAMMERSLEY W, SISKA D, SZPRUCH L. McKean-Vlasov SDEs under measure dependent Lyapunov conditions[J]. Annales de l'Institut Henri Poincare, Probabilites et Statistiques, 2021, 57 (2): 1032-1057.
    [15] CARMONA R, DELARUE F. Probabilistic Theory of Mean Field Games With Applications [M]. Springer Cham, 2018.
    [16] RUZHANSKY M, SUGIMOTO M. On global inversion of homogeneous maps[J]. Bulletin of Mathematical Sciences, 2015, 5 (1): 13-18.
    [17] MAO Xuerong. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing Ltd, 2008.
  • 加载中
计量
  • 文章访问数:  429
  • HTML全文浏览量:  192
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-03-11
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回