留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动机械臂的层级聚合建模方法研究

董方方 杨超 韩江 张新荣

董方方, 杨超, 韩江, 张新荣. 移动机械臂的层级聚合建模方法研究[J]. 应用数学和力学, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025
引用本文: 董方方, 杨超, 韩江, 张新荣. 移动机械臂的层级聚合建模方法研究[J]. 应用数学和力学, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025
DONG Fangfang, YANG Chao, HAN Jiang, ZHANG Xinrong. A Hierarchical Aggregation Modelling Method for Mobile Manipulators[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025
Citation: DONG Fangfang, YANG Chao, HAN Jiang, ZHANG Xinrong. A Hierarchical Aggregation Modelling Method for Mobile Manipulators[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1473-1490. doi: 10.21656/1000-0887.440025

移动机械臂的层级聚合建模方法研究

doi: 10.21656/1000-0887.440025
基金项目: 

国家自然科学基金项目 52275484

安徽省自然科学基金项目 2208085ME126

详细信息
    作者简介:

    董方方(1988—),男,副教授,博士,硕士生导师(E-mail: fangfangdong@hfut.edu.cn)

    通讯作者:

    张新荣(1968—),男,教授,博士,硕士生导师(通讯作者. E-mail: zhangxinrong_chd@163.com)

  • 中图分类号: O313.3;TH113

A Hierarchical Aggregation Modelling Method for Mobile Manipulators

  • 摘要: 移动机械臂因机械臂在动态作业过程中的耦合效应会影响移动平台的运动特性,增加了整个系统的复杂度和非线性,给系统建模带来了极大挑战. 为此提出了一种新的层级聚合建模方法. 该方法依据分析力学中Udwadia-Kalaba(U-K)理论的层级属性,首先将移动机械臂划分为3个子系统,并分别利用Lagrange方程建立各自的无约束动力学模型,然后基于移动机械臂机械结构上的约束利用Udwadia-Kalaba基本方程(UKE)建立整体系统模型. 此外,针对系统存在初始条件偏差的情况,利用基于Lyapunov稳定性理论来补偿初始条件偏差,以达到收敛理想轨迹的目的. 仿真结果验证了该文所提出的建模方法的可行性.
  • 图  1  单摆系统

    Figure  1.  A single pendulum system

    图  2  移动机械臂子系统分割图

    Figure  2.  Partition of the mobile manipulator subsystem

    图  3  移动机械臂坐标示意图

    Figure  3.  Coordinate systems for the mobile manipulator

    图  4  移动平台结构示意图

    Figure  4.  Schematic diagram of the mobile platform structure

    图  5  子系统S21S31示意图

    Figure  5.  Diagrams of subsystem S21 and S31

    图  6  移动平台轨迹

    Figure  6.  Mobile platform trajectories

    图  7  机械臂各关节轨迹

    Figure  7.  Trajectories of each joint of the manipulator

    图  8  移动平台与机械臂各自轨迹误差

    Figure  8.  The respective trajectory errors of the mobile platform and the manipulator

    图  9  层级聚合方法与拉氏方法计算效率对比

    Figure  9.  Comparison of computation efficiency between the hierarchical aggregation method and the Lagrange method

    图  10  移动平台和末端执行器的轨迹

    Figure  10.  The mobile platform and the end-effector trajectories

    图  11  移动平台各方向轨迹图

    Figure  11.  Trajectory diagram for mobile platform in all directions

    图  12  移动平台和末端执行器的轨迹误差

    Figure  12.  The mobile platform and end-effector trajectory errors

    图  13  移动平台和关节的约束力

    Figure  13.  The mobile platforms and joint constraints

    表  1  机械臂-移动平台质量比[1]

    Table  1.   Robotic arm-mobile platform mass ratios[1]

    research institution robotic arm mass mr/kg platform mass mp/kg mass ratio δ
    University of Texas[2] 3.68 17.25 0.21
    Ryerson University[3] 15.50 44.40 0.35
    Hokkaido University[4] 4.40 20.56 0.21
    Pukyong National University[5] 2.85 9.50 0.30
    Iran University of Science and Technology[6] 0.72 6.00 0.12
    Institute of Automation, CAS[7] 7.50 60.00 0.13
    South China University of Technology[8] 2.00 10.00 0.20
    下载: 导出CSV

    表  2  机械臂几何参数

    Table  2.   Geometric parameters of the manipulator

    joint number αi-1/(°) ai-1 di θi
    1 0 0 0 θ1
    2 90° 0 l1 θ2
    3 0 l2 0 θ3
    4 0 l3 0 0
    下载: 导出CSV

    表  3  系统动力学参数表

    Table  3.   System dynamics parameters

    object mass m/kg length l/m moment of inertia I/(kg·m2)
    mobile platform 50 2
    joint 1 2 0.5 0.625
    joint 2 3 0.7 0.122 5
    joint 3 2 0.5 0.042
    end-effector 0.5 0.1 0.000 4
    下载: 导出CSV

    表  4  约束条件参数

    Table  4.   Constraint parameters

    constraint initial condition
    $\begin{gathered}F_1: x(t)=\frac{\pi}{2} t; F_2: y(t)=\sin \left(\frac{\pi}{2} t\right); \\ F_3: \varphi(t)=\cos \left(\frac{\pi}{2} t\right); \\ F_4: x_{\mathrm{mp}}(t)=0.75+0.25 \cos (\pi t); \\ F_5: y_{\mathrm{mp}}(t)=\frac{0.25 \sqrt{2}}{2} \sin (\pi t); \\ F_6: z_{\mathrm{mp}}(t)=0.25-\frac{0.25 \sqrt{2}}{2} \sin (\pi t)\end{gathered}$ $\begin{gathered}x_0=1; y_0=1; \varphi_0=0; \\ \theta_1=-\frac{\pi}{2}; \theta_2=\frac{\pi}{2}; \theta_3=\frac{\pi}{6}; \\ \dot{x}_0=1; \dot{y}_0=1; \dot{\varphi}_0=0; \\ \dot{\theta}_1=-\frac{\pi}{2}; \dot{\theta}_2=\frac{\pi}{2}; \dot{\theta}_3=\frac{\pi}{6}\end{gathered}$
    下载: 导出CSV
  • [1] 罗欣, 丁晓军. 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53(1): 1-15.

    LUO Xin, DING Xiaojun. Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 1-15. (in Chinese)
    [2] TANG C P, MILLER P T, KROVI V N, et al. Differential-flatness-based planning and control of a wheeled mobile manipulator: theory and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(4): 768-773.
    [3] LIU Y, LIU G. Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes[J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(4): 623-635.
    [4] ZHONG G, KOBAYASHI Y, HOSHINO Y, et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics, 2013, 73(1): 167-182.
    [5] VIET T D, DOAN P T, HUNG N, et al. Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 2197-2211. doi: 10.1007/s12206-012-0541-1
    [6] KORAYEM M H, ESFEDEN R A, NEKOO S R. Path planning algorithm in wheeled mobile manipulators based on motion of arms[J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1753-1763. doi: 10.1007/s12206-015-0349-x
    [7] TAN X W, ZHAO D B, YI J. Motion control of omnidirectional mobile manipulators, part Ⅰ: modeling and control[J]. Journal of Mechanical Engineering, 2009, 45(1): 35-41. doi: 10.3901/JME.2009.01.035
    [8] LI Z, YANG C, TANG Y. Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments[J]. IET Control Theory & Applications, 2013, 7(3): 397-410.
    [9] LIU K, LEWIS F L. Decentralized continuous robust controller for mobile robots[C]//Proceedings, IEEE International Conference on Robotics and Automation. Cincinnati, OH, USA, 1990: 1822-1827.
    [10] 杨贺贺, 陈炜, 童嘉琦, 等. 含柔性关节的轮式移动机械臂的动力学分析[J]. 天津理工大学学报, 2022, 38(2): 45-51.

    YANG Hehe, CHEN Wei, TONG Jiaqi, et al. Dynamic analysis of wheeled mobile manipulator with flexible joints[J]. Journal of Tianjin University of Technology, 2022, 38(2): 45-51. (in Chinese)
    [11] 陈良港, 张方, 张建光, 等. 基于对偶四元数移动机械臂运动学建模与控制[J]. 科技创新与应用, 2022, 12(5): 1-5.

    CHEN Lianggang, ZHANG Fang, ZHANG Jianguang, et al. Dynamic analysis of wheeled mobile manipulator with flexible joints[J]. Technology Innovation and Application, 2022, 12(5): 1-5. (in Chinese)
    [12] 魏丽君, 吴海波, 刘海龙, 等. 基于D-H算法的移动机械臂正运动学研究[J]. 计量与测试技术, 2020, 47(10): 1-5.

    WEI Lijun, WU Haibo, LIU Hailong, et al. Research on trajectory planning of mobile manipulator based on improved gradient projection algorithm[J]. Metrology & Measurement Technique, 2020, 47(10): 1-5. (in Chinese)
    [13] ZHONG G, KOBAYASHI Y, HOSHINO Y, et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics, 2013, 73(1): 167-182.
    [14] UDWADIA F E, KALABA R E. Analytical Dynamics: a New Approach[M]. New York: Cambridge University Press, 1996.
    [15] UDWADIA F E, KALABA R E. A new perspective on constrained motion[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1992, 439(1906): 407-410. doi: 10.1098/rspa.1992.0158
    [16] UDWADIA F E, KALABA R E. Explicit equations of motion for mechanical systems with nonideal constraints[J]. Journal of Applied Mechanics, 2001, 68(3): 462-467. doi: 10.1115/1.1364492
    [17] HUANG J, CHEN Y H, GUO K. Novel approach to multibody system modeling: cascading and clustering[J]. Journal of Aerospace Engineering, 2014, 27(2): 279-290. doi: 10.1061/(ASCE)AS.1943-5525.0000217
    [18] 董方方, 喻斌, 赵晓敏, 等. 双移动机械臂空间协作动力学建模研究[J]. 应用数学和力学, 2022, 43(8): 846-856. doi: 10.21656/1000-0887.420223

    DONG Fangfang, YU Bin, ZHAO Xiaomin, et al. Dynamic modeling of spatial cooperation between dual-arm mobile manipulators[J]. Applied Mathematics and Mechanics, 2022, 43(8): 846-856. (in Chinese) doi: 10.21656/1000-0887.420223
    [19] 韩江, 汪鹏, 董方方, 等. 基于Udwadia-Kalaba方法的平面冗余并联机器人建模与轨迹跟踪控制[J]. 应用数学和力学, 2020, 41(11): 1183-1196. doi: 10.21656/1000-0887.400363

    HAN Jiang, WANG Peng, DONG Fangfang, et al. Modeling and control of planar redundant parallel robots based on the Udwadia-Kalaba method[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1183-1196. (in Chinese) doi: 10.21656/1000-0887.400363
    [20] UDWADIA F E. A new perspective on the tracking control of nonlinear structural and mechanical systems[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 2003, 459(2035): 1783-1800. doi: 10.1098/rspa.2002.1062
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  85
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-08-06
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回