留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RBF神经网络的压气机叶片面压力场预测研究

姚明辉 王兴志 吴启亮 牛燕

姚明辉, 王兴志, 吴启亮, 牛燕. 基于RBF神经网络的压气机叶片面压力场预测研究[J]. 应用数学和力学, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054
引用本文: 姚明辉, 王兴志, 吴启亮, 牛燕. 基于RBF神经网络的压气机叶片面压力场预测研究[J]. 应用数学和力学, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054
YAO Minghui, WANG Xingzhi, WU Qiliang, NIU Yan. RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054
Citation: YAO Minghui, WANG Xingzhi, WU Qiliang, NIU Yan. RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054

基于RBF神经网络的压气机叶片面压力场预测研究

doi: 10.21656/1000-0887.440054
基金项目: 

国家自然科学基金项目 11972253

天津市自然科学基金重点项目 19JCZDJC32300

详细信息
    通讯作者:

    姚明辉(1971—),女,教授,博士,博士生导师(通讯作者. E-mail: merry_mingming@163.com)

  • 中图分类号: O31

RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors

  • 摘要: 航空发动机压气机内部流道气流特性复杂,叶片所处的涡状流场具有高压、高速、旋转和非定常等特点,因此,亟需高效、准确地计算和预测压气机叶片复杂流场的气动特性. 该文针对航空发动机叶片复杂流场的研究,通过计算流体动力学(computational fluid dynamics, CFD)方法,生成不同工作状态下的叶片表面气动载荷分布. 采用径向基函数(radial based function, RBF)神经网络建立压力面表面气动载荷预测模型,将神经网络建模方法与流场计算相结合,神经网络方法能够对基于CFD的数据集进行学习和训练,适当地弥补来自计算流体动力学的误差,为有效预测航空发动机压气机叶片复杂流场提供了参考渠道.
  • 图  1  叶片网格划分

    Figure  1.  The blade meshing

    图  2  流道网格划分

    Figure  2.  The flow field channel meshing

    图  3  收敛图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The convergence plot

    图  4  叶片在流道中的位置分布

    Figure  4.  The blade position distribution in the flow passage

    图  5  压力面气流方向图

    Figure  5.  The flow direction diagram of the pressure surface

    图  6  吸力面气流方向图

    Figure  6.  The flow direction diagram of the suction surface

    图  7  叶片区域分布

    Figure  7.  The leaf area distribution

    图  8  选取的叶片线形数据

    Figure  8.  The selected leaf profile data

    图  9  各条线形位置

    Figure  9.  Positions of each line type

    图  10  RBF神经网络结构

    Figure  10.  The RBF neural network structure

    图  11  转速5 000 r/min下叶片中部、尖部、根部RBF神经网络预测结果

    Figure  11.  RBF neural network prediction results for the middle, the tip and the root at 5 000 r/min

    图  12  实验编号36的RBF预测数据与CFD计算数据对比

    Figure  12.  Comparison of RBF prediction data and CFD calculation data for experiment number 36

    图  13  实验编号37的RBF预测数据与CFD计算数据对比

    Figure  13.  Comparison of RBF prediction data and CFD calculation data for experiment number 37

    图  14  实验编号38的RBF预测数据与CFD计算数据对比

    Figure  14.  Comparison of RBF prediction data and CFD calculation data for experiment number 38

    图  15  实验编号39的RBF预测数据与CFD计算数据对比

    Figure  15.  Comparison of RBF prediction data and CFD calculation data for experiment number 39

    图  16  实验编号40的RBF预测数据与CFD计算数据对比

    Figure  16.  Comparison of RBF prediction data and CFD calculation data for experiment number 40

    表  1  实验设计

    Table  1.   Experimental design

    experiment №. rotational speed ω/(r/min) entrance flow q/(kg/s) temperature T/K outlet static pressure Po/Pa
    1 4 000 1 280 150 000
    2 4 000 3 300 160 000
    3 4 000 5 320 170 000
    4 4 000 7 340 180 000
    5 4 000 9 360 190 000
    6 8 000 1 280 150 000
    7 8 000 3 300 160 000
    8 8 000 5 320 170 000
    9 8 000 7 340 180 000
    10 8 000 9 360 190 000
    11 12 000 1 280 150 000
    12 12 000 3 300 160 000
    13 12 000 5 320 170 000
    14 12 000 7 340 180 000
    15 12 000 9 360 190 000
    16 16 000 1 280 150 000
    17 16 000 3 300 160 000
    18 16 000 5 320 170 000
    19 16 000 7 340 180 000
    20 16 000 9 360 190 000
    21 20 000 1 280 150 000
    22 20 000 3 300 160 000
    23 20 000 5 320 170 000
    24 20 000 7 340 180 000
    25 20 000 9 360 190 000
    26 4 000 5 300 150 000
    27 4 000 7 300 150 000
    28 8 000 5 300 150 000
    29 8 000 7 300 150 000
    30 12 000 5 300 150 000
    31 12 000 7 300 150 000
    32 16 000 5 300 150 000
    33 16 000 7 300 150 000
    34 20 000 5 300 150 000
    35 20 000 7 300 150 000
    36 4 000 3 300 150 000
    37 8 000 3 300 150 000
    38 12 000 3 300 150 000
    39 16 000 3 300 150 000
    40 20 000 3 300 150 000
    下载: 导出CSV

    表  2  误差对比结果

    Table  2.   Error comparison results

    rotational speed ω/(r/min) 4 000 8 000 12 000 16 000 20 000
    error δ/% 4.59 4.29 2.42 1.33 5.52
    下载: 导出CSV

    表  3  其他转速条件下的预测误差

    Table  3.   Prediction errors at other speed conditions

    rotational speed ω/(r/min) entrance flow q/(kg/s) temperature T/K outlet static pressure Po/Pa error δ/%
    5 000 3 300 150 000 1.2
    6 000 3 300 150 000 2.3
    7 000 3 300 150 000 2.6
    9 000 3 300 150 000 2.7
    10 000 3 300 150 000 3.1
    11 000 3 300 150 000 2.4
    13 000 3 300 150 000 2.6
    14 000 3 300 150 000 3.1
    15 000 3 300 150 000 2.6
    17 000 3 300 150 000 2.4
    18 000 3 300 150 000 2.5
    19 000 3 300 150 000 3.0
    下载: 导出CSV
  • [1] LI C F, SHE H X, TANG Q S, et al. The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features[J]. Applied Mathematical Modelling, 2019, 67: 557-572. doi: 10.1016/j.apm.2018.09.041
    [2] YANG J S, XIE J S, CHEN G G, et al. An efficient method for vibration equations with time varying coefficients and nonlinearities[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 1744-1763. doi: 10.1177/14613484211025151
    [3] ZHAO Y M, XIA Z H, SHI Y P, et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow[J]. Physics of Fluids, 2014, 26(9): 095103. doi: 10.1063/1.4895589
    [4] ZHAO Y M, YANG Y, CHEN S Y. Evolution of material surfaces in the temporal transition in channel flow[J]. Journal of Fluid Mechanics, 2016, 793: 840-876. doi: 10.1017/jfm.2016.152
    [5] BAI B, BAI G C, LI C. Application of multi-stage multi-objective multi-disciplinary agent model based on dynamic substructural method in mistuned blisk[J]. Aerospace Science and Technology, 2015, 46: 104-115. doi: 10.1016/j.ast.2015.06.030
    [6] 王超, 王贵东, 白鹏. 飞行仿真气动力数据机器学习建模方法[J]. 空气动力学学报, 2019, 37(3): 488-497. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903016.htm

    WANG Chao, WANG Guidong, BAI Peng. Machine learning method for aerodynamic modeling based on flight simulation data[J]. Acta Aerodynamica Sinica, 2019, 37(3): 488-497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903016.htm
    [7] BALLA K, SEVILLA R, HASSAN O, et al. An application of neural networks to the prediction of aerodynamic coefficients of aerofoils and wings[J]. Applied Mathematical Modelling, 2021, 96: 456-479. doi: 10.1016/j.apm.2021.03.019
    [8] LOU J, ZHU W, WANG H, et al. Prediction of residual stress for machining aviation engine blade based on RBF neural network[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 361-370.
    [9] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 52-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901004.htm

    CHEN Haixin, DENG Kaiwen, LI Runze. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 52-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901004.htm
    [10] 赵翔, 茹东恒, 王鹏, 等. 基于NARX神经网络方法的汽轮机转子关键部位应力预测[J]. 应用数学和力学, 2021, 42(8): 771-784. doi: 10.21656/1000-0887.410372

    ZHAO Xiang, RU Dongheng, WANG Peng, et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784. (in Chinese) doi: 10.21656/1000-0887.410372
    [11] LINSE D J, STENGEL R F. Identification of aerodynamic coefficients using computational neural networks[J]. Journal of Guidance Control and Dynamics, 1993, 16(6): 1018-1025. doi: 10.2514/3.21122
    [12] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1): 477-508. doi: 10.1146/annurev-fluid-010719-060214
    [13] 张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201901002.htm

    ZHANG Tianjiao, QIAN Weiqi, ZHOU Yu, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201901002.htm
    [14] 何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903014.htm

    HE Lei, QIAN Weiqi, WANG Qing, et al. Applications of machine learning for aerodynamic characteristic modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903014.htm
    [15] FEI T, JI L C, YI W L. Performance characteristic modeling for 2D compressor cascades[J]. International Journal of Turbo and Jet Engines, 2019, 39(3): 367-382.
    [16] ZHAO Y, MENG Y, YU P, et al. Prediction of fluid force exerted on bluff body by neural network method[J]. Journal of Shanghai Jiaotong University (Science), 2020, 25(2): 186-192. doi: 10.1007/s12204-019-2140-0
    [17] PAZIREH S, DEFOE J. A new loss generation body force model for fan/compressor blade rows: application to uniform and non-uniform inflow in rotor 67[J]. Journal of Turbomachinery, 2022, 144(6): 061005. doi: 10.1115/1.4053231
    [18] REN L H, YE Z F, ZHAO Y P. A modeling method for aero-engine by combining stochastic gradient descent with support vector regression[J]. Aerospace Science and Technology, 2020, 99: 105775.
    [19] ZHANG M M, HAO S R, HOU A P. Study on the intelligent modeling of the blade aerodynamic force in compressors based on machine learning[J]. Mathematics, 2021, 9(5): 476.
    [20] LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177.
    [21] QIN S, WANG S Y, WANG L Y, et al. Multi-objective optimization of cascade blade profile based on reinforcement learning[J]. Applied Sciences-Basel, 2021, 11(1): 106.
    [22] QIN S, WANG S Y, SUN G, et al. New approach of inverse design of transonic compressor rotor blade via prescribed isentropic Mach distributions without modification of governing equations[J]. Proceedings of the Institution of Mechanical Engineers(Part G): Journal of Aerospace Engineering, 2022, 236(7): 1422-1438.
    [23] 廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34(8): 1751-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201908013.htm

    LIAO Peng, YAO Leijiang, BAI Guodong, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8): 1751-1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201908013.htm
    [24] 王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
    [25] 杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9): 2251-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202309020.htm

    DU Zhou, XU Quanyong, SONG Zhenshou, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9): 2251-2260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202309020.htm
    [26] 王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. doi: 10.21656/1000-0887.400279

    WANG Jincheng, QI Jin, WU Chuijie. Analysis and modelling optimal dynamical systems of incompressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2020, 41(1): 1-15. (in Chinese) doi: 10.21656/1000-0887.400279
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  240
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-05-10
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回