留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔功能梯度压电纳米壳中波传播特性

王鑫特 刘娟 胡彪 张波 沈火明

王鑫特, 刘娟, 胡彪, 张波, 沈火明. 多孔功能梯度压电纳米壳中波传播特性[J]. 应用数学和力学, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057
引用本文: 王鑫特, 刘娟, 胡彪, 张波, 沈火明. 多孔功能梯度压电纳米壳中波传播特性[J]. 应用数学和力学, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057
WANG Xinte, LIU Juan, HU Biao, ZHANG Bo, SHEN Huoming. Wave Propagation in Functionally Graded Piezoelectric Nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057
Citation: WANG Xinte, LIU Juan, HU Biao, ZHANG Bo, SHEN Huoming. Wave Propagation in Functionally Graded Piezoelectric Nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057

多孔功能梯度压电纳米壳中波传播特性

doi: 10.21656/1000-0887.440057
基金项目: 

国家自然科学基金 11502218

详细信息
    作者简介:

    王鑫特(1998—),男,硕士(E-mail: 15833215871@163.com)

    通讯作者:

    刘娟(1986—),女,副教授,博士(通讯作者. E-mail: lj187@swjtu.edu.cn)

  • 中图分类号: TB383; TB34

Wave Propagation in Functionally Graded Piezoelectric Nanoshells

  • 摘要: 基于非局部应变梯度理论,探究了含孔隙的功能梯度压电陶瓷纳米壳中波传播特性. 利用Hamilton原理和一阶剪切理论推导了控制方程. 结合非局部应变梯度理论和谐波解得到了尺度依赖的特征方程. 数值讨论了尺度参数、波数、梯度指数、壳厚、孔隙率及电压对波传播特性的影响. 研究表明:非局部参数和应变梯度参数对波传播频率的影响与波数密切相关,在一定范围内波数越大,尺度参数对频率的影响越大;另外,孔隙和梯度指数对频率具有耦合作用.
  • 图  1  多孔FGPM纳米壳的模型示意图

    Figure  1.  The geometric model for the porous FGPM nanoshell

    图  2  退化验证(η=1 nm2)

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Comparison of frequency dispersion results (η=1 nm2)

    图  3  基于不同波数,变化的η/μ比值对FGPM纳米壳波传播频率的影响

    Figure  3.  Frequencies vs. η/μ values for different wave numbers of the FGPM nanoshell

    图  4  基于不同波数,变化的尺度参数和功能梯度指数对FGPM纳米壳波传播频率的影响

    Figure  4.  Frequencies vs. scale parameters and FG indexes for different wave numbers of the FGPM nanoshell

    图  5  不同壳厚下FGPM纳米壳的频率与功能梯度指数的关系

    Figure  5.  Frequencies vs. FG indexes for different thicknesses of the FGPM nanoshell

    图  6  不同孔隙率下FGPM纳米壳的频率与功能梯度指数的关系

    Figure  6.  Frequencies vs. FG indexes for different porosities of the FGPM nanoshell

    图  7  不同外电压作用下FGPM纳米壳的频率与功能梯度指数的关系

    Figure  7.  Frequencies vs. FG indexes for different electric voltages of the FGPM nanoshell

    表  1  FGPM的材料特性数值

    Table  1.   Material properties of the FGPM

    material unit PZT-4 PZT-5H
    elastic modulus GPa c11=139, c12=77.8, c13=74,
    c22=139, c23=74, c33=115,
    c44=25.6, c55=25.6, c66=30.6
    c11=126, c12=79.1, c13=83.9,
    c22=126, c23=83.9, c33=117,
    c44=23, c55=23, c66=23.5
    piezoelectric modulus C/m2 e31=-5.2, e32=-5.2, e33=15.1,
    e15=12.7, e24=12.7
    e31=-6.5, e32=-6.5, e33=23.3,
    e15=17, e24=17
    dielectric modulus C/(V·m) s11=5.841×10-9, s33=7.124×10-9 s11=1.505×10-8, s33=1.302×10-8
    mass density kg/m3 ρ=7 500 ρ=7 500
    下载: 导出CSV

    表  2  前三阶固有频率(f1, f2, f3)与纵向波数k和周向波数n的关系

    Table  2.   The 1st 3 orders of frequencies vs. longitudinal and circumferential wave numbers

    n k/m-1 f1/THz f2/THz f3/THz
    1 1×108 0.727 8 1.407 4 2.375 5
    5×108 2.881 4 3.119 8 3.219 8
    1×109 6.448 6 7.129 6 7.514 7
    10 1×108 0.773 5 1.330 0 2.242 7
    5×108 2.929 7 3.175 6 3.275 2
    1×109 6.457 7 7.140 8 7.526 7
    100 1×108 2.973 8 3.235 4 3.336 7
    5×108 4.301 9 4.838 0 4.916 2
    1×109 7.327 1 8.172 2 8.646 4
    下载: 导出CSV
  • [1] 夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm

    XIA Wei, FENG Haocheng. Aeroelastic flutter of post-buckled functionally graded panels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603010.htm
    [2] NAN Z, XIE Z, SHIJIE Z, et al. Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams[J]. Smart Materials and Structures, 2020, 29(4): 045025. doi: 10.1088/1361-665X/ab73e4
    [3] VASHISHTH A K, BAREJA U. Analysis of Love waves propagation in a functionally graded porous piezoelectric composite structure[J/OL]. Waves in Random and Complex Media, 2022: 1-32[2023-05-03]. https://doi.org/10.1080/17455030.2022.2037786.
    [4] 陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171

    CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
    [5] FARAJPOUR A, GHAYESH M H, FAROKHI H. A review on the mechanics of nanostructures[J]. International Journal of Engineering Science, 2018, 133: 231-263. doi: 10.1016/j.ijengsci.2018.09.006
    [6] 王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26. doi: 10.21656/1000-0887.410188

    WANG Pingyuan, LI Cheng, YAO Linquan. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26. (in Chinese) doi: 10.21656/1000-0887.410188
    [7] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710. doi: 10.1063/1.332803
    [8] WANG Y Q, LIANG C, ZU J W. Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory[J]. The European Physical Journal Plus, 2019, 134(5): 1-15.
    [9] ARANI A G, BARZOKI A A M, KOLAHCHI R, et al. Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2385-2391. doi: 10.1007/s12206-011-0712-5
    [10] WANG Q, VARADAN V K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes[J]. Smart Materials and Structures, 2007, 16(1): 178-190. doi: 10.1088/0964-1726/16/1/022
    [11] KUANG Y D, HE X Q, CHEN C Y, et al. Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid[J]. Computational Materials Science, 2009, 45(4): 875-880. doi: 10.1016/j.commatsci.2008.12.007
    [12] MA Q, CLARKE D R. Size dependent hardness of silver single crystals[J]. Journal of Materials Research, 1995, 10(4): 853-863. doi: 10.1557/JMR.1995.0853
    [13] MC ELHANEY K W, VLASSAK J J, NIX W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments[J]. Journal of Materials Research, 1998, 13(5): 1300-1306. doi: 10.1557/JMR.1998.0185
    [14] 徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用[J]. 应用数学和力学, 2022, 43(4): 363-373. doi: 10.21656/1000-0887.420286

    XU Xiaojian, DENG Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J]. Applied Mathematics and Mechanics, 2022, 43(4): 363-373. (in Chinese) doi: 10.21656/1000-0887.420286
    [15] LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. doi: 10.1016/j.jmps.2015.02.001
    [16] MA L H, KE L L, REDDY J N, et al. Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory[J]. Composite Structures, 2018, 199: 10-23. doi: 10.1016/j.compstruct.2018.05.061
    [17] WANG P Y, LI C, LI S, et al. A variational approach for free vibrating micro-rods with classical and non-classical new boundary conditions accounting for nonlocal strengthening and temperature effects[J]. Journal of Thermal Stresses, 2020, 43(4): 421-439. doi: 10.1080/01495739.2020.1722048
    [18] WANG P Y, LI C, LI S. Bending vertically and horizontally of compressive nano-rods subjected to nonlinearly distributed loads using a continuum theoretical approach[J]. Journal of Vibration Engineering & Technologies, 2020, 8(6): 947-957.
    [19] SHEN J P, WANG P Y, LI C, et al. New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory[J]. Composite Structures, 2019, 225: 111036. doi: 10.1016/j.compstruct.2019.111036
    [20] SHARIFI Z, KHORDAD R, GHARAATI A, et al. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(12): 1723-1740. doi: 10.1007/s10483-019-2545-8
    [21] MEHRALIAN F, BENI Y T. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(1): 27. doi: 10.1007/s40430-017-0938-y
    [22] LIU Y F, WANG Y Q. Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells[J]. Nanomaterials(Basel), 2019, 9(2): 301. doi: 10.3390/nano9020301
    [23] WANG Y Q, LIU Y F, ZU J W. Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect[J]. The European Physical Journal Plus, 2019, 134(2): 1-15.
    [24] LONG H, MA H S, WEI Y G, et al. A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity[J]. International Journal of Mechanical Sciences, 2021, 198: 106348. doi: 10.1016/j.ijmecsci.2021.106348
    [25] BARATI M R, ZENKOUR A M. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions[J]. Journal of Vibration and Control, 2016, 24(10): 1910-1926.
    [26] ISMAIL E, RAMAZAN Ö. Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity[J]. Composite Structures, 2022, 296: 115878. doi: 10.1016/j.compstruct.2022.115878
    [27] FALEH N M, AHMED R A, FENJAN R M. On vibrations of porous FG nanoshells[J]. International Journal of Engineering Science, 2018, 133: 1-14. doi: 10.1016/j.ijengsci.2018.08.007
    [28] SAFARPOUR H, ALI GHANIZADEH S, HABIBI M. Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory[J]. The European Physical Journal Plus, 2018, 133(12): 1-17.
    [29] YANG J. Special Topics in the Theory of Piezoelectricity[M]. Springer Science & Business Media, 2010.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  93
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-03
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回