留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扣焓火焰面模型在喷雾燃烧模拟中的应用

何俊奕 李峰 胡群 王利坡

何俊奕, 李峰, 胡群, 王利坡. 扣焓火焰面模型在喷雾燃烧模拟中的应用[J]. 应用数学和力学, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064
引用本文: 何俊奕, 李峰, 胡群, 王利坡. 扣焓火焰面模型在喷雾燃烧模拟中的应用[J]. 应用数学和力学, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064
HE Junyi, LI Feng, HU Qun, WANG Lipo. Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064
Citation: HE Junyi, LI Feng, HU Qun, WANG Lipo. Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1017-1030. doi: 10.21656/1000-0887.440064

扣焓火焰面模型在喷雾燃烧模拟中的应用

doi: 10.21656/1000-0887.440064
(我刊编委王利坡来稿)
详细信息
    作者简介:

    何俊奕(1995—),男,硕士(E-mail: damienhejunyi@sjtu.edu.cn)

    李峰(1990—),男,硕士(E-mail: 906309319@qq.com)

    胡群(1997—),男(E-mail: qun_hu@sjtu.edu.cn)

    通讯作者:

    王利坡(1974—),男,副教授,博士,博士生导师(通讯作者. E-mail: Lipo.Wang@sjtu.edu.cn)

  • 中图分类号: O357.41

Application of Enthalpy Deficit Flamelet Model in Spray Combustion Simulation

(Contributed by WANG Lipo, M. AMM Editorial Board)
  • 摘要: 基于OpenFOAM的求解器,使用大涡模拟结合纯气相火焰面生成流形方法进行了喷雾燃烧模拟,并采用简单的扣焓处理来考虑蒸发热损失.该求解器首先借助悉尼乙醇喷雾火焰标模EtF7进行了验证.预测的气相平均温度和液滴统计数据与实验数据吻合良好,精度与喷雾火焰面模型接近.湍流-化学反应相互作用建模处理可能对模拟精度有更大影响.然后,对一个真实的航空发动机折流燃烧室进行了两组工况的数值模拟.仿真结果合理展现了两种工况下喷雾火焰燃烧的不同特征,并且预测的总压损失值接近于测量值.
    1)  (我刊编委王利坡来稿)
  • 图  1  FGM方法的实施流程

    Figure  1.  Procedures of FGM method

    图  2  悉尼喷雾燃烧室计算域及网格

    Figure  2.  The computation domain and mesh of the Sydney spray combustor

    图  3  中心线附近网格分布

    Figure  3.  Grid distribution near the centerline

    图  4  不同网格预测得到在轴向位置x/D=30处的气相平均温度T、液滴Sauter平均直径Smd和液滴轴向平均速度Ux的径向分布

    Figure  4.  Predicted radial profiles of mean gas temperature T, Sauter mean droplet diameter Smd and axial mean droplet velocity Ux at x/D=30 with different meshes

    图  5  y=0截面的瞬时和平均速度场、温度场、混合分数场

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Instantaneous and mean velocity magnitude, temperature and mixture fraction distributions at section y=0

    图  6  预测气相平均温度与实验值在不同轴向位置的径向分布

    Figure  6.  Predicted radial profiles of the mean gas temperature with the experimental data in 3 different axial positions

    图  7  预测液滴Smd与实验值在不同轴向位置的径向分布

    Figure  7.  Predicted radial profiles of spray droplets Smd with the experimental data in 6 different axial positions

    图  8  预测液滴轴向平均速度与实验值在不同轴向位置的径向分布

    Figure  8.  Predicted radial profiles of the axial mean droplet velocity with the experimental data in 6 different axial positions

    图  9  实际折流燃烧室的计算域

    Figure  9.  The computation domain of the realistic slinger combustor

    图  10  计算域网格的局部几何细节

    Figure  10.  Local geometric details of the computation mesh

    图  11  y=0截面的预测瞬时速度分布和流线图

    Figure  11.  Predicted velocity distributions and streamlines at section y=0

    图  12  y=0截面的预测瞬时和平均总温分布

    Figure  12.  Predicted instantaneous and mean total temperature distributions at section y=0

    图  13  温度测量截面的预测瞬时和平均总温分布

    Figure  13.  Predicted instantaneous and mean total temperature distribution at temperature measurement section

    图  14  y=0截面的预测火焰指数分布

    Figure  14.  Predicted flame index distributions at section y=0

    表  1  液相引起的源项表达式

    Table  1.   Expressions of liquid source terms

    source term expression
    Sρ $ -\frac{1}{V_c} \sum\limits_p \dot{m}_p N_p$
    Su, i $ \frac{1}{V_c} \sum_p m_p N_p\left[\left(U_{p, i}^{t_n+\Delta t}-U_{p, i}^{t_n}\right) / \Delta t-g_i\right]-\frac{1}{V_c} \sum\limits_p \dot{m}_p N_p U_{p, i}^{t_n}$
    下载: 导出CSV

    表  2  两组不同工况的测量数据

    Table  2.   Measured data in 2 working conditions

    index working condition 1 working condition 2
    air inlet mass flow rate air/(kg·s-1) 2.313 2.707
    fuel inlet mass flow rate fuel/(g·s-1) 13.8 31.7
    fuel air mass ratio (F/A)/% 0.596 6 1.171 7
    air inlet temperature Tair/K 300 300
    fuel inlet temperature Tfuel/K 300 300
    air inlet total pressure Pt, air/kPa 305.103 408.172
    total pressure loss ΔPt/kPa 50.912 74.861
    下载: 导出CSV

    表  3  进程变量源项在不同燃烧区域的条件均值

    Table  3.   Conditional means of progress variable source terms in different combustion zones

    working condition ωY/(kg·m-3·s-1)
    ξ=-1 ξ=+1
    working condition 1 5.03 4.44
    working condition 2 13.82 7.03
    下载: 导出CSV
  • [1] GOUNDER J D, KOURMATZIS A, MASRI A R. Turbulent piloted dilute spray flames: flow fields and droplet dynamics[J]. Combustion and Flame, 2012, 159(11): 3372-3397. doi: 10.1016/j.combustflame.2012.07.014
    [2] YAN Y, ZHAO J, ZHANG J, et al. Large-eddy simulation of two-phase spray combustion for gas turbine combustors[J]. Applied Thermal Engineering, 2008, 28(11/12): 1365-1374.
    [3] JONES W, MARQUIS A, VOGIATZAKI K. Large-eddy simulation of spray combustion in a gas turbine combustor[J]. Combustion and Flame, 2014, 161(1): 222-239. doi: 10.1016/j.combustflame.2013.07.016
    [4] PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339. doi: 10.1016/0360-1285(84)90114-X
    [5] PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. doi: 10.1017/S0022112004008213
    [6] VREMAN A W, ALBRECHT B A, VAN OIJEN J A, et al. Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F[J]. Combustion and Flame, 2008, 153(3): 394-416. doi: 10.1016/j.combustflame.2008.01.009
    [7] NGUYEN P D, VERVISCH L, SUBRAMANIAN V, et al. Multidimensional flamelet-generated manifolds for partially premixed combustion[J]. Combustion and Flame, 2010, 157(1): 43-61. doi: 10.1016/j.combustflame.2009.07.008
    [8] CHEN J, LIU M, CHEN Y. Optimizing progress variable definition in flamelet-based dimension reduction in combustion[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1481-1498. doi: 10.1007/s10483-015-1997-7
    [9] LI T, KONG F, XU B, et al. Turbulent combustion modeling using a flamelet generated manifold approach: a validation study in openfoam[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1197-1210. doi: 10.1007/s10483-019-2503-6
    [10] MOIN P, APTE S V. Large-eddy simulation of realistic gas turbine combustors[J]. AIAA Journal, 2006, 44(4): 698-708. doi: 10.2514/1.14606
    [11] BABA Y, KUROSE R. Analysis and flamelet modelling for spray combustion[J]. Journal of Fluid Mechanics, 2008, 612: 45-79. doi: 10.1017/S0022112008002620
    [12] MA L, ROEKAERTS D. Modeling of spray jet flame under mild condition with non-adiabatic FGM and a new conditional droplet injection model[J]. Combustion and Flame, 2016, 165: 402-423. doi: 10.1016/j.combustflame.2015.12.025
    [13] KONG F, LI T, CHENG C, et al. Modeling of spray flame in gas turbine combustors with LES and FGM[J]. Fuel, 2022, 325: 124756. doi: 10.1016/j.fuel.2022.124756
    [14] GUTHEIL E, SIRIGNANO W A. Counterflow spray combustion modeling with detailed transport and detailed chemistry[J]. Combustion and Flame, 1998, 113(1/2): 92-105.
    [15] YI R, ZHANG X, CHEN C. Large eddy simulation of a turbulent dilute ethanol flame using the two-phase spray flamelet generated manifold approach[J]. Combustion Science and Technology, 2022. DOI: 10.1080/00102202.2022.2139612.
    [16] HU Y, KAI R, KUROSE R, et al. Large eddy simulation of a partially pre-vaporized ethanol reacting spray using the multiphase DTF/flamelet model[J]. International Journal of Multiphase Flow, 2020, 125: 103216. doi: 10.1016/j.ijmultiphaseflow.2020.103216
    [17] FRANZELLI B, VIÉ A, IHME M. On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[J]. Combustion Theory and Modelling, 2015, 19(6): 773-806. doi: 10.1080/13647830.2015.1099740
    [18] WANG Y, CAI R, SHAO C, et al. A priori and a posteriori studies of a novel spray flamelet tabulation methodology considering evaporation effects[J]. Fuel, 2023, 331(2): 125892.
    [19] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765. doi: 10.1063/1.857955
    [20] BILGER R, STARNER S, KEE R. On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80(2): 135-149. doi: 10.1016/0010-2180(90)90122-8
    [21] CHRIGUI M, GOUNDER J, SADIKI A, et al. Partially premixed reacting acetone spray using les and fgm tabulated chemistry[J]. Combustion and Flame, 2012, 159(8): 2718-2741. doi: 10.1016/j.combustflame.2012.03.009
    [22] RANZ W, MARSHALL W. Evaporation from droplets[J]. Chemical Engineering Progress, 1952, 48(3): 141-146.
    [23] WEHRFRITZ A, KAARIO O, VUORINEN V, et al. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds[J]. Combustion and Flame, 2016, 167: 113-131. doi: 10.1016/j.combustflame.2016.02.019
    [24] KORNEV N, KRÖGER H, TURNOW J, et al. Synthesis of artificial turbulent fields with prescribed second-order statistics using the random-spot method[J]. PAMM: Proceedings in Applied Mathematics and Mechanics, 2007, 7(1): 2100047-2100048. doi: 10.1002/pamm.200700460
    [25] YAO T, PEI Y, ZHONG B J, et al. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations[J]. Fuel, 2017, 191: 339-349. doi: 10.1016/j.fuel.2016.11.083
    [26] 曾川, 王洪铭, 单鹏. 微涡喷发动机离心甩油盘环形折流燃烧室的设计与实验研究[J]. 航空动力学报, 2003, 18(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301016.htm

    ZENG Chuan, WANG Hongming, SHAN Peng. The design and study of the annular combustion chamber with centrifugal fuel injection[J]. Journal of Aerospace Power, 2003, 18(1): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200301016.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  207
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-05-12
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回