留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LES-FGM方法的部分预混湍流燃烧中间组分模拟

张玮杰 王金华 胡光亚 李德立 王子淇 黄佐华

张玮杰, 王金华, 胡光亚, 李德立, 王子淇, 黄佐华. 基于LES-FGM方法的部分预混湍流燃烧中间组分模拟[J]. 应用数学和力学, 2023, 44(9): 1031-1041. doi: 10.21656/1000-0887.440068
引用本文: 张玮杰, 王金华, 胡光亚, 李德立, 王子淇, 黄佐华. 基于LES-FGM方法的部分预混湍流燃烧中间组分模拟[J]. 应用数学和力学, 2023, 44(9): 1031-1041. doi: 10.21656/1000-0887.440068
ZHANG Weijie, WANG Jinhua, HU Guangya, LI Deli, WANG Ziqi, HUANG Zuohua. Modelling Intermediate Species in Partially Premixed Turbulent Combustion Based on the LES-FGM Method[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1031-1041. doi: 10.21656/1000-0887.440068
Citation: ZHANG Weijie, WANG Jinhua, HU Guangya, LI Deli, WANG Ziqi, HUANG Zuohua. Modelling Intermediate Species in Partially Premixed Turbulent Combustion Based on the LES-FGM Method[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1031-1041. doi: 10.21656/1000-0887.440068

基于LES-FGM方法的部分预混湍流燃烧中间组分模拟

doi: 10.21656/1000-0887.440068
基金项目: 

国家自然科学基金项目 52206169

详细信息
    通讯作者:

    张玮杰(1991—),男,助理教授,博士(通讯作者. E-mail: wjzhang@xjtu.edu.cn)

  • 中图分类号: O357

Modelling Intermediate Species in Partially Premixed Turbulent Combustion Based on the LES-FGM Method

  • 摘要: 基于FGM建表燃烧模型对德国达姆施塔特工业大学的MRB部分预混湍流火焰开展大涡模拟,并对比研究了预混和部分预混FGM建表方法对模拟的影响.结果表明,不同建表方法对MRB火焰结构、速度分布和主要组分分布等影响较小,但部分预混建表能显著提升中间组分CO和H2的模拟可靠性.其根本原因是部分预混建表使用了对冲火焰模型,能够充分引入燃空混合过程对中间组分的影响.通过添加额外的组分输运方程可提升预混火焰建表对中间组分模拟的可靠性,且前人提出的拉伸作用在该火焰中影响较小.该研究为基于建表方法的部分预混湍流燃烧准确模拟提供了重要参考.
  • 图  1  MRB燃烧器示意图及其湍流入口设置

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic of the MRB burner and its turbulent inlets

    图  2  不同建表方法的𝒴源项云图和火焰面分布示意

    Figure  2.  The source term of 𝒴 and distribution of flamelets based on different methods of tabulation

    图  3  计算域和网格

    Figure  3.  The computation domain and mesh

    图  4  MRB26b模拟结果的控制变量分布

    Figure  4.  Simulated control variable distributions of MRB26b

    图  5  速度、温度和主要组分LES与实验结果对比

    Figure  5.  Comparisons of LES and experiment results in terms of velocity, temperature and major species

    图  6  中间组分CO和H2LES与实验结果对比

    Figure  6.  Comparisons of LES and experiment results in terms of intermediate species CO and H2

    图  7  中间组分CO和H2质量分数的控制变量条件分布

    Figure  7.  Control variable conditioned mass fraction distributions of intermediate species CO and H2

    图  8  FP和CF表格中CO2、CO和H2质量分数分布

    Figure  8.  Mass fraction distributions of CO2, CO and H2 in FP and CF tabulations

  • [1] MASRI A R. Partial premixing and stratification in turbulent flames[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1115-1136. doi: 10.1016/j.proci.2014.08.032
    [2] LIPATNIKOV A N. Stratified turbulent flames: recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges[J]. Progress in Energy and Combustion Science, 2017, 62: 87-132. doi: 10.1016/j.pecs.2017.05.001
    [3] 李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012

    LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanics, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012
    [4] VAN OIJEN J A, DONINI A, BASTIAANS R J M, et al. State-of-the-art in premixed combustion modeling using flamelet generated manifolds[J]. Progress in Energy and Combustion Science, 2016, 57: 30-74. doi: 10.1016/j.pecs.2016.07.001
    [5] 俞森彬, 刘潇, 周波. 掺氢比对高Ka数射流预混湍流火焰的影响[J]. 燃烧科学与技术, 2021, 27(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX202101008.htm

    YU Senbin, LIU Xiao, ZHOU Bo. Effects of hydrogen blending ratio on turbulent premixed pilot jet flame at high Karlovitz number[J]. Journal of Combustion Science and Technology, 2021, 27(1): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX202101008.htm
    [6] VAN OIJEN J A, DE GOEY L P H. Modelling of premixed counterflow flames using the flamelet-generated manifold method[J]. Combustion Theory and Modelling, 2002, 6(3): 463-478. doi: 10.1088/1364-7830/6/3/305
    [7] GICQUEL O, DARABIHA N, THÉVENIN D. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1901-1908. doi: 10.1016/S0082-0784(00)80594-9
    [8] PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. doi: 10.1017/S0022112004008213
    [9] WEN X, BAI X-S, LUO K, et al. A generalized flamelet tabulation method for partially premixed combustion[J]. Combustion and Flame, 2018, 198: 54-68. doi: 10.1016/j.combustflame.2018.08.021
    [10] KNUDSEN E, SHASHANK, PITSCH H. Modeling partially premixed combustion behavior in multiphase LES[J]. Combustion and Flame, 2015, 162(1): 159-180. doi: 10.1016/j.combustflame.2014.07.013
    [11] WEN X, LUO Y, LUO K, et al. LES of pulverized coal combustion with a multi-regime flamelet model[J]. Fuel, 2017, 188: 661-671. doi: 10.1016/j.fuel.2016.10.070
    [12] WU H, SEE Y C, WANG Q, et al. A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations[J]. Combustion and Flame, 2015, 162(11): 4208-4230. doi: 10.1016/j.combustflame.2015.06.021
    [13] WU H, MA P C, JARAVEL T, et al. Pareto-efficient combustion modeling for improved CO-emission prediction in LES of a piloted turbulent dimethyl ether jet flame[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2267-2276. doi: 10.1016/j.proci.2018.08.010
    [14] PROCH F, KEMPF A M. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry[J]. Combustion and Flame, 2014, 161(10): 2627-2646. doi: 10.1016/j.combustflame.2014.04.010
    [15] NAMBULLY S, DOMINGO P, MOUREAU V, et al. A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames, part Ⅰ: formalism and application to a bluff-body burner with differential diffusion[J]. Combustion and Flame, 2014, 161(7): 1756-1774. doi: 10.1016/j.combustflame.2014.01.005
    [16] DONINI A, RJ M B, VAN OIJEN J A, et al. A 5-D implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor[J]. Flow, Turbulence and Combustion, 2017, 98(3): 887-922. doi: 10.1007/s10494-016-9777-7
    [17] ZHANG W, KARACA S, WANG J, et al. Large eddy simulation of the Cambridge/Sandia stratified flame with flamelet-generated manifolds: effects of non-unity lewis numbers and stretch[J]. Combustion and Flame, 2021, 227: 106-119. doi: 10.1016/j.combustflame.2021.01.004
    [18] POPP S, HARTL S, BUTZ D, et al. Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2551-2558. doi: 10.1016/j.proci.2020.06.098
    [19] TURKERI H, ZHAO X, POPE S B, et al. Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series[J]. Combustion and Flame, 2019, 199: 24-45. doi: 10.1016/j.combustflame.2018.10.018
    [20] HAN W, WANG H, KUENNE G, et al. Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2555-2563. doi: 10.1016/j.proci.2018.06.228
    [21] BUTZ D, HARTL S, POPP S, et al. Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics[J]. Combustion and Flame, 2019, 210: 426-438. doi: 10.1016/j.combustflame.2019.08.032
    [22] BUTZ D, BREICHER A, BARLOW R S, et al. Turbulent multi-regime methane-air flames analysed by Raman/Rayleigh spectroscopy and conditional velocity field measurements[J]. Combustion and Flame, 2022, 243: 111941. doi: 10.1016/j.combustflame.2021.111941
    [23] DELHAYE S, SOMERS L M T, VAN OIJEN J A, et al. Incorporating unsteady flow-effects in flamelet-generated manifolds[J]. Combustion and Flame, 2008, 155(1/2): 133-144.
    [24] MA L, HUANG X, ROEKAERTS D. Large eddy simulation of CO2 diluted oxy-fuel spray flames[J]. Fuel, 2017, 201: 165-175. doi: 10.1016/j.fuel.2017.02.050
    [25] FLOYD J, KEMPF A M, KRONENBURG A, et al. A simple model for the filtered density function for passive scalar combustion LES[J]. Combustion Theory and Modelling, 2009, 13(4): 559-588.
    [26] VENTOSA-MOLINA J, LEHMKUHL O, PÉREZ-SEGARRA C D, et al. Large eddy simulation of aturbulent diffusion flame: some aspects of subgrid modelling consistency[J]. Flow, Turbulence and Combustion, 2017, 99(1): 209-238.
    [27] ZHOU B, BRACKMANN C, LI Z, et al. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1409-1416.
    [28] WANG H, HAWKES E R, SAVARD B, et al. Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame[J]. Combustion and Flame, 2018, 193: 229-245.
    [29] CHEN Z X, LANGELLA I, BARLOW R S, et al. Prediction of local extinctions in piloted jet flames with inhomogeneous inlets using unstrained flamelets[J]. Combustion and Flame, 2020, 212: 415-432.
    [30] EFIMOV D V, DE GOEY P, VAN OIJEN J A. FGM with REDx: chemically reactive dimensionality extension[J]. Combustion Theory and Modelling, 2018, 22(6): 1103-1133.
    [31] KETELHEUN A, OLBRICHT C, HAHN F, et al. NO prediction in turbulent flames using LES/FGM with additional transport equations[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2975-2982.
  • 加载中
图(8)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  214
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-05-04
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回