留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进深度残差收缩网络的心电信号分类算法

龚玉晓 高淑萍

龚玉晓, 高淑萍. 基于改进深度残差收缩网络的心电信号分类算法[J]. 应用数学和力学, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074
引用本文: 龚玉晓, 高淑萍. 基于改进深度残差收缩网络的心电信号分类算法[J]. 应用数学和力学, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074
GONG Yuxiao, GAO Shuping. An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks[J]. Applied Mathematics and Mechanics, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074
Citation: GONG Yuxiao, GAO Shuping. An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks[J]. Applied Mathematics and Mechanics, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074

基于改进深度残差收缩网络的心电信号分类算法

doi: 10.21656/1000-0887.440074
基金项目: 

国家自然科学基金项目 91338115

高等学校学科创新引智计划(111计划) B08038

详细信息
    作者简介:

    龚玉晓(1997—),女,硕士生(E-mail: 986809674@qq.com)

    通讯作者:

    高淑萍(1963—),女,教授,博士,硕士生导师(通讯作者. E-mail: gaosp@mail.xidian.edu.cn)

  • 中图分类号: O29;TP183;TN911.7

An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks

  • 摘要: 心电信号分类是医疗保健领域的重要研究内容. 针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法). 首先,使用合成少数类过采样技术(SMOTE)扩充数量少的类别样本,从而解决了类不平衡问题;其次,利用改进深度残差收缩网络提取空间特征,其残差模块可以避免网络层加深造成的过拟合,压缩激励和软阈值化子网络可以提取重要局部特征并自动去除噪声;然后,通过长短期记忆网络(LSTM)提取时间特征;最后,利用全连接网络输出分类结果. 在MIT-BIH心律失常数据集上的实验结果表明,该算法的分类性能优于IDRSN、DRSN、GAN+2DCNN、CNN+LSTM_ATTENTION、SE-CNN-LSTM分类算法.
  • 图  1  DRSN结构图

    Figure  1.  The structure of DRSN

    图  2  LSTM单元内部结构图

    Figure  2.  The internal structure of an LSTM unit

    图  3  IDRSN结构图

    Figure  3.  The structure of IDRSN

    图  4  DRSL算法流程图

    Figure  4.  The flow chart of the DRSL algorithm

    图  5  Loss值与迭代次数的关系

    Figure  5.  Relationships between the training loss and the number of iteration times

    图  6  准确率与迭代次数的关系

    Figure  6.  Relationships between the accuracy and the number of iteration times

    图  7  混淆矩阵

    Figure  7.  Confusion matrix

    表  1  AAMI标准以及4种心拍类别的样本数量

    Table  1.   The AAMI standards and the number of heartbeats in the 4 classes

    heartbeat category of the AAMI heartbeat category of the MIT-BIH database expert annotation code number
    normal heartbeat (N) normal beat (N)
    left bundle branch block beat (L)
    right bundle branch block beat (R)
    nodal (junctional) escape beat (j)
    atrial escape beat (e)
    1, 2, 3, 11, 34 90 004
    supraventricular ectopic heartbeat (S)aberrated atrial premature beat (a)
    nodal (junctional) premature beat (J)
    atrial premature beat (A)
    supraventricular premature beat (S)
    4, 7, 8, 9 2 778
    ventricular ectopic heartbeat (V) premature ventricular contraction (V)
    ventricular escape beat (E)
    5, 10 7 004
    fusion heartbeat (F) fusion of ventricular and normal beat (F) 6 802
    total 100 588
    下载: 导出CSV

    表  2  类别平衡前后的数据集

    Table  2.   Datasets before and after class balancing

    N S V F
    training set 14 000 1 944 4 903 562
    balanced training set 14 000 14 000 14 000 14 000
    validation set 2 000 278 700 80
    test set 4 000 556 1 401 160
    下载: 导出CSV

    表  3  DRSL网络的超参数设置

    Table  3.   Hyperparameter settings for the DRSL network

    layer type network parameter value training parameter value
    CNN
    max pooling
    IDRSN(a)+IDRSN(b)
    IDRSN(a)+IDRSN(b)
    IDRSN(a)+IDRSN(b)
    IDRSN(a)+IDRSN(b)
    IDRSN(a)+IDRSN(b)
    LSTM
    global average pooling
    dense
    dense
    Ffilter=8, Dcs=3, padding=“same”, kernel_regularizer=L2(0.000 1)
    pooling_size=(2, 2), strides=(2, 2), a=“tanh”
    Cout=8
    Cout=16
    Cout=32
    Cout=64
    Cout=128
    unit is 32, a=“tanh”
    a=“LeakyReLU”
    unit is 32
    unit is 4, a=“softmax”, kernel_regularizer=L2(0.000 1)
    epochs is 20
    batch_size is 64
    optimizer=“Adam”
    initial_learning_rate=0.002
    each additional 10 epochs,
    the learning rate decreased
    to 0.1 times
    下载: 导出CSV

    表  4  DRSL算法在测试集上的分类结果

    Table  4.   The classification results of the DRSL algorithm on the test set

    δAcc/% δSen/% δSpec/% δPPV/%
    N 98.53 98.80 98.02 98.95
    S 99.17 95.50 99.53 95.33
    V 98.92 97.64 99.30 97.64
    F 99.30 88.13 99.60 85.45
    overall classification performance 98.98 95.02 99.11 94.34
    下载: 导出CSV

    表  5  DRSL算法与其消融实验的总体分类性能比较

    Table  5.   The overall classification performance comparison between the DRSL algorithm and its ablation experiments

    classification algorithm overall classification performance
    average δAcc/% average δSen/% average δSpec/% average δPPV/%
    DRSL 98.98 95.02 99.11 94.34
    IDRSN 98.94 94.60 99.00 93.93
    DRSN 98.79 93.88 98.85 94.71
    下载: 导出CSV

    表  6  DRSL算法与其他算法的总体分类性能比较

    Table  6.   The overall classification performance comparison between the DRSL algorithm and other algorithms

    classification algorithm denoising and sample balancing methods overall classification performance
    average δAcc/% average δSen/% average δSpec/% average δPPV/%
    DRSL null+SMOTE 98.98 95.02 99.11 94.34
    GAN+2DCNN[9] null+GAN 98.41 93.68 98.85 92.65
    CNN+LSTM_ATTENTION[11] wavelet threshold+SMOTE 98.38 95.80 98.58 92.35
    SE-CNN-LSTM[12] wavelet threshold+SMOTE 97.69 89.56 97.86 89.27
    下载: 导出CSV

    表  7  DRSL算法与其他算法的S类分类性能比较

    Table  7.   The classification performance comparison in class S between the DRSL algorithm and other algorithms

    classification algorithm class S classification performance
    δAcc/% δSen/% δSpec/% δPPV/%
    DRSL 99.17 95.50 99.53 95.33
    IDRSN 99.04 92.99 99.64 96.28
    DRSN 98.61 92.81 99.19 91.98
    GAN+2DCNN[9] 98.05 95.50 98.30 84.69
    CNN+LSTM_ATTENTION[11] 98.28 94.24 98.69 87.77
    SE-CNN-LSTM[12] 97.47 87.05 98.51 85.36
    下载: 导出CSV
  • [1] EBRAHIMI Z, LONI M, DANESHTALAB M, et al. A review on deep learning methods for ECG arrhythmia classification[J]. Expert Systems With Applications: X, 2020, 7 : 100033. doi: 10.1016/j.eswax.2020.100033
    [2] KLIGFIELD P. The centennial of the einthoven electrocardiogram[J]. Journal of Electrocardiology, 2002, 35 (4): 123-129. doi: 10.1054/jelc.2002.37169
    [3] LYNCH R. ECG lead misplacement: a brief review of limb lead misplacement[J]. African Journal of Emergency Medicine, 2014, 4 (3): 130-139. doi: 10.1016/j.afjem.2014.05.006
    [4] 李胜蓝, 辛继宾, 莫梅琦, 等. 基于QRS波群的心律失常辅助诊断模型研究[J]. 生物医学工程学进展, 2008, 29 (4): 202-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYC200804006.htm

    LI Shenglan, XIN Jibin, MO Meiqi, et al. The research of diagnosis model for arrhythmia using QRS complex[J]. Advances in Biomedical Engineering, 2008, 29 (4): 202-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHYC200804006.htm
    [5] LANNOY G D, FRANCOIS D, DELBEKE J, et al. Weighted conditional random fields for supervised interpatient heartbeat classification[J]. IEEE Transactions on Bio-Medical Engineering, 2012, 59 (1): 241-247. doi: 10.1109/TBME.2011.2171037
    [6] LAGERHOLM M, PETERSON C, BRACCINI G, et al. Clustering ECG complexes using hermite functions and self-organizing maps[J]. IEEE Transactions on Bio-Medical Engineering, 2000, 47 (7): 838-848. doi: 10.1109/10.846677
    [7] MINHAS F A, ARIF M. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform[J]. Physiological Measurement, 2008, 29 (5): 555-570. doi: 10.1088/0967-3334/29/5/003
    [8] MONDÉJAR-GUERRA V, NOVO J, ROUCO J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers[J]. Biomedical Signal Processing and Control, 2019, 47 : 41-48. doi: 10.1016/j.bspc.2018.08.007
    [9] 陈鹏, 刘子龙. 基于GAN-CNN的心律失常识别[J]. 电子科技, 2022, 35 (3): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202203007.htm

    CHEN Peng, LIU Zilong. Arrhythmia recognition based on GAN-CNN[J]. Electronic Science and Technology, 2022, 35 (3): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202203007.htm
    [10] SOWMYA S, JOSE D. Contemplate on ECG signals and classification of arrhythmia signals using CNN-LSTM deep learning model[J]. Measurement: Sensors, 2022, 24 : 100558. doi: 10.1016/j.measen.2022.100558
    [11] ZHANG T. Arrhythmias classification based on CNN and LSTM_ATTENTION hybrid model[C]//Proceedings of the 2021 3 rd World Symposium on Artificial Intelligence. Guangzhou, China: IEEE, 2021: 58-63.
    [12] 郭炜伦, 方钰敏, 徐海蛟, 等. 基于SE-CNN-LSTM的心电识别算法[J]. 电脑知识与技术, 2022, 18 (21): 73-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202221026.htm

    GUO Weilun, FANG Yumin, XU Haijiao, et al. An ECG recognition algorithm based on SE-CNN-LSTM[J]. Computer Knowledge and Technology, 2022, 18 (21): 73-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202221026.htm
    [13] HAN C, SHI L. ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG[J]. Computer Methods and Programs in Biomedicine, 2020, 185 : 105138. doi: 10.1016/j.cmpb.2019.105138
    [14] 秦博, 黎明, 黎天翼, 等. 基于注意力残差模型的心律失常分类研究[J]. 湖北师范大学学报(自然科学版), 2022, 42 (3): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF202203003.htm

    QIN Bo, LI Ming, LI Tianyi, et al. Research on arrhythmia classification based on attention residual model[J]. Journal of Hubei Normal University (Natural Science Edition), 2022, 42 (3): 18-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF202203003.htm
    [15] 刘小靖, 周又和, 王记增. 小波方法及其力学应用研究进展[J]. 应用数学和力学, 2022, 43 (1): 1-13. doi: 10.21656/1000-0887.420388

    LIU Xiaojing, ZHOU Youhe, WANG Jizeng. Research progresses of wavelet methods and their applications in mechanics[J]. Applied Mathematics and Mechanics, 2022, 43 (1): 1-13. (in Chinese) doi: 10.21656/1000-0887.420388
    [16] ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (7): 4681-4690. doi: 10.1109/TII.2019.2943898
    [17] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the Computer Vision ECCV 2016. Cham: Springer, 2016: 630-645.
    [18] 洪奇峰, 施伟斌, 吴迪, 等. 深度卷积神经网络模型发展综述[J]. 软件导刊, 2020, 19 (4): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004017.htm

    HONG Qifeng, SHI Weibin, WU Di, et al. Review of the development of deep convolutional neural network model[J]. Software Guide, 2020, 19 (4): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004017.htm
    [19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2018: 7132-7141.
    [20] 吴爱华, 彭金喜. 基于深度残差收缩网络的信号调制类型识别[J]. 电子信息对抗技术, 2022, 37 (4): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK202204005.htm

    WU Aihua, PENG Jinxi. Signal modulation recognition based on deep residual shrinkage network[J]. Electronic Information Countermeasure Technology, 2022, 37 (4): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK202204005.htm
    [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735-1780.
    [22] 张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021, 42 (1): 82-91. doi: 10.21656/1000-0887.410056

    ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 82-91. (in Chinese) doi: 10.21656/1000-0887.410056
    [23] 韦张跃昊, 钱升谊. 基于滤波重构和卷积神经网络的心电信号分类[J]. 电子科技, 2019, 32 (11): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201911003.htm

    WEI Zhangyuehao, QIAN Shengyi. ECG signal classification based on filtering-reconstruction and convolutional neural network[J]. Electronic Science and Technology, 2019, 32 (11): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201911003.htm
    [24] LIU F, ZHOU X, WANG T, et al. An attention-based hybrid LSTM-CNN model for arrhythmias classification[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2019: 1-8.
    [25] 李兴秀, 唐建军, 华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索, 2021, 15 (12): 2353-2361. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202112010.htm

    LI Xingxiu, TANG Jianjun, HUA Jing. Arrhythmia classification based on CNN and bidirectional LSTM[J]. Computer Science and Exploration, 2021, 15 (12): 2353-2361. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202112010.htm
    [26] 石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14 (6): 1073-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201906002.htm

    SHI Hongbo, CHEN Yuwen, CHEN Xin. Summary of research on SMOTE oversampling and its improved algorithms[J]. Journal of Intelligent Systems, 2019, 14 (6): 1073-1083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201906002.htm
    [27] 黄莹. 基于深度残差收缩网络的心律失常分类算法研究[D]. 硕士学位论文. 南宁: 广西大学, 2022.

    HUANG Ying. A research of arrhythmia classification algorithm based on deep residual shrinkage network[D]. Master Thesis. Nanning: Guangxi University, 2022. (in Chinese)
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  150
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-06-19
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回