留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷雾碰壁燃烧数值模拟研究

秦文瑾 韩天祥 张振东 孙跃东

秦文瑾, 韩天祥, 张振东, 孙跃东. 喷雾碰壁燃烧数值模拟研究[J]. 应用数学和力学, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077
引用本文: 秦文瑾, 韩天祥, 张振东, 孙跃东. 喷雾碰壁燃烧数值模拟研究[J]. 应用数学和力学, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077
QIN Wenjin, HAN Tianxiang, ZHANG Zhendong, SUN Yuedong. Numerical Simulation Study of Spray Wall Impingement Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077
Citation: QIN Wenjin, HAN Tianxiang, ZHANG Zhendong, SUN Yuedong. Numerical Simulation Study of Spray Wall Impingement Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077

喷雾碰壁燃烧数值模拟研究

doi: 10.21656/1000-0887.440077
基金项目: 

上海市科技计划项目 21010503000

详细信息
    通讯作者:

    秦文瑾(1981—),男,副教授,博士,硕士生导师(通讯作者. E-mail: qinwenjin@usst.edu.cn)

  • 中图分类号: O242.1

Numerical Simulation Study of Spray Wall Impingement Combustion

  • 摘要: 燃油喷雾碰壁是小型高压直喷式柴油机中普遍存在的现象. 燃油碰壁会影响缸内燃烧过程,进而显著地影响柴油机的动力学、经济性和排放性. 为了更好地认识燃油喷雾碰壁燃烧现象,该研究采用数值模拟的方法对该过程进行计算,探究其特殊的燃烧特性. 研究结果表明:在碰壁喷雾的两阶段燃烧过程中,喷雾碰壁促进喷雾径向发展半径和卷吸高度的增加,促进近壁面油气混合,在近壁面形成有利于低温点火的条件. 低温燃烧反应在混合气较为稀薄的近壁面区域开始,随后向碰壁喷雾中心浓混合气区域发展. 随着低温氧化燃烧持续放热,碰壁喷雾雾束中心区域温度逐渐升高,同时积累大量甲醛. 由于喷雾碰壁会导致碰壁雾束中心形成较浓混合气,并且低温燃烧放热量较少,导致部分碳氧化物无法完全燃烧,增加了碳烟的生成量. 另外随着高温燃烧的进行,温度持续升高,碰壁喷雾卷吸更多环境气体,进而产生大量氮氧化物.
  • 图  1  在Kuhnke薄膜飞溅模型中,4种壁面相互作用类型

    Figure  1.  Four types of wall interaction in the Kuhnke thin-film splash model

    图  2  碰壁喷雾液滴空间分布与实验对比

    Figure  2.  Comparison between the spatial distributions of impinging spray droplets and experimental results

    图  3  喷雾贯穿距与实验对比

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Comparison between the spray penetration distances and experimental results

    图  4  三维仿真模型

    Figure  4.  The 3D simulation model

    图  5  CH2O质量、OH质量和温度变化

    Figure  5.  Changes in CH2O and OH masses and temperatures

    图  6  CH2O、OH和温度分布云图(白色轮廓线为当量混合分数Zst=0.068)

    Figure  6.  Distribution maps of CH2O, OH, and the temperature (the white contour line represents equivalent mixture fraction Zst=0.068)

    图  7  低温燃烧阶段CH2O空间分布云图

    Figure  7.  Spatial distribution maps of CH2O during the low-temperature combustion stage

    图  8  高温燃烧阶段OH空间分布云图

    Figure  8.  Spatial distribution maps of OH during the high-temperature combustion stage

    图  9  不同时刻混合质量分数-温度散点图

    Figure  9.  Scatter plots of the mixture mass fraction and the temperature at different moments

    图  10  碳烟和氮氧化物分布

    Figure  10.  Distributions of soot and NOx

    表  1  喷雾碰壁等实验参数

    Table  1.   Experimental parameters of spray wall impingement et al

    parameter value
    injection pressure Pi/MPa 15
    ambient pressure Pa/MPa 0.1
    ambient temperature Ta/K 296
    wall temperature Tw/K 473
    impingement distance l/mm 22.5
    下载: 导出CSV

    表  2  实验参数

    Table  2.   Numerical simulation parameters

    parameter value
    injection pressure Pi/MPa 40
    impingement distance l/mm 40
    ambient temperature Ta/K 813
    wall temperature Tw/K 408
    下载: 导出CSV
  • [1] 赵昶博. 混合动力专用发动机燃烧优化及其整车匹配[D]. 硕士学位论文. 长春: 吉林大学, 2020.

    ZHAO Changbo. Optimization of combustion for hybrid powertrain dedicated engines and their integration with vehicles[D]. Master Thesis. Changchun: Jilin University, 2020. (in Chinese)
    [2] 李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012

    LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanic, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012
    [3] 陈燕, 文春景. 车用柴油机的排放污染与控制[J]. 山东交通科技, 2005, 2: 77-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE200502027.htm

    CHEN Yan, WEN Chunjing. Emissions and control of pollutants from diesel engines used in vehicles[J]. Shandong Transportation Technology, 2005, 2: 77-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE200502027.htm
    [4] WACHTERS L H J, WESTERLING N A J. The heat transfer from a hot wall to impinging water drops in the spheroidal state[J]. Chemical Engineering Science, 1966, 21(11): 1047-1056. doi: 10.1016/0009-2509(66)85100-X
    [5] NABER J D, REITZ R D. Modeling engine spray/wall impingement[R]. SAE Technical Paper, 1988: 118-140.
    [6] BAI C X, RUSCHE H, GOSMAN A D. Modeling of gasoline spray impingement[J]. Atomization and Sprays, 2002, 12(1/3): 1-27.
    [7] O'ROURKE P J, AMSDEN A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000: 281-298.
    [8] HAN Z, XU Z, TRIGUI N. Spray/wall interaction models for multidimensional engine simulation[J]. International Journal of Engine Research, 2000, 1(1): 127-146. doi: 10.1243/1468087001545308
    [9] KUHNKE D. Spray/Wall Interaction Modelling by Dimensionless Data Analysis[M]. Shaker, 2004.
    [10] LI K, NISHIDA K, OGATA Y, et al. Effect of flat-wall impingement on diesel spray combustion[J]. Proceedings of the Institution of Mechanical Engineers(Part D): Journal of Automobile Engineering, 2015, 229(5): 535-549. doi: 10.1177/0954407014547242
    [11] LIU Y, YEOM J K, CHUNG S S. An experimental study on the effects of impingement-walls on the spray and combustion characteristics of SIDI CNG[J]. Journal of Mechanical Science and Technology, 2012, 26: 2239-2246. doi: 10.1007/s12206-012-0604-3
    [12] BEALE J C, REITZ R D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model[J]. Atomization and Sprays, 1999, 9(6): 623-650. doi: 10.1615/AtomizSpr.v9.i6.40
    [13] Convergent Science. CONVERGE_2.4_Manual[Z]. CONVERGE CFD Manual Series, 2018.
    [14] POMRANING E D. Development of Large Eddy Simulation Turbulence Models[M]. The University of Wisconsin-Madison, 2000.
    [15] 龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究[J]. 应用数学和力学, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274

    GONG Sheng, WU Chuijie. Large-eddy simulation of supersonic capsule-rigid disk-gap-band parachute systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. (in Chinese) doi: 10.21656/1000-0887.410274
    [16] AMSDEN A A, O'ROURKE P J, BUTLER T D. A computer program for chemically reactive flows with sprays: LA-11560-MS[R]. Los Alamos National Laboratory Report, 1989.
    [17] JIA M, PENG Z J, XIE M Z. Numerical investigation of soot reduction potentials with diesel homogeneous charge compression ignition combustion by an improved phenomenological soot model[J]. Proceedings of the Institution of Mechanical Engineers(Part D): Journal of Automobile Engineering, 2009, 223(3): 395-412. doi: 10.1243/09544070JAUTO993
    [18] HEYWOOD J B. Internal Combustion Engine Fundamentals[M]. New York: McGraw-Hill, 1988.
    [19] MONTANARO A, ALLOCCA L, MECCARIELLO G, et al. Schlieren and Mie scattering imaging system to evaluate liquid and vapor contours of a gasoline spray impacting on a heated wall[R]. SAE Technical Paper, 2015. DOI: https://doi.org/10.4271/2015-24-2473.
    [20] 娄珏珏. 柴油喷雾碰壁着火及燃烧特性的试验研究[D]. 硕士学位论文. 北京: 北京理工大学, 2018.

    LOU Yuyu. Experimental study on diesel spray wall impingement ignition and combustion characteristics[D]. Master Thesis. Beijing: Beijing Institute of Technology, 2018. (in Chinese)
    [21] SKEEN S A, MANIN J, PICKETT L M. Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3167-3174.
    [22] PEI Y, SOM S, POMRANING E, et al. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions[J]. Combustion and Flame, 2015, 162(12): 4442-4455.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  213
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-08-03
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回