A Self-Adaptive Alternating Direction Multiplier Method for Frictionless Elastic Contact Problems
-
摘要: 对一类无摩擦的弹性接触问题,得到了求其数值解的自适应交替方向乘子法.由该问题导出相应的变分问题,引入辅助变量将原问题转化为一个基于增广Lagrange函数表示的鞍点问题,并采用交替方向乘子法求解;为了提高算法性能,提出了利用边界迭代函数自动选取合适罚参数的自适应法则. 该算法的优点是每次迭代只需计算一个线性变分问题,同时显式计算了辅助变量和Lagrange乘子. 对算法的收敛性进行了理论分析,最后用数值结果验证了该算法的可行性和有效性.
-
关键词:
- 弹性接触问题 /
- 交替方向乘子法 /
- 自适应法则 /
- 增广Lagrange
Abstract: A self-adaptive alternating direction multiplier method was designed for frictionless elastic contact problems. An augmented Lagrange function was introduced for the variational formulation of the problem with an auxiliary variable, to deduce a minimization problem and an equivalent saddle-point problem. Then the alternating direction multiplier method was used to solve the problem. To enhance the performance of the algorithm, a self-adaptive rule based on the iterative function on the boundary was proposed to automatically select the proper penalty parameter. The advantage of this algorithm is that, each iteration only needs to solve a linear variational problem and explicitly calculate the auxiliary variable and the Lagrange multiplier. The convergence of the algorithm was analyzed theoretically. The numerical results illustrate the feasibility and effectiveness of the proposed method. -
表 1 g=0.01时3种算法的CPU运行时间
Table 1. CPU time for 3 methods with g=0.01
ρ ADMM1 ADMM2 SADMM $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ 1 3.080 9.305 29.344 37.788 5.213 12.865 24.283 41.639 0.562 1.171 2.617 4.214 10 2.670 8.665 34.726 37.629 5.137 12.331 23.814 40.909 0.454 1.135 2.342 3.891 102 0.611 2.890 6.224 10.178 1.474 4.169 7.156 11.393 0.610 0.984 2.145 3.632 103 0.229 0.896 1.842 3.765 0.577 1.223 1.978 3.943 0.425 0.650 1.321 2.516 104 0.306 1.223 2.905 5.742 0.502 1.228 2.479 4.286 0.409 0.743 1.496 2.699 表 2 3种算法的CPU运行时间
Table 2. CPU time for 3 methods
ρ ADMM1 ADMM2 SADMM $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ 1 4.114 13.733 35.051 54.791 4.008 13.227 30.753 53.383 0.378 1.313 3.129 7.029 10 3.827 13.505 39.201 65.841 3.792 12.91 29.465 52.564 0.381 1.227 2.982 6.649 102 1.565 5.294 16.247 26.196 1.256 5.132 12.322 22.394 0.314 1.116 2.645 5.985 103 0.933 2.552 7.530 12.051 0.872 2.386 5.276 8.389 0.238 0.786 1.932 5.017 104 0.699 2.059 6.003 10.109 0.384 1.306 3.059 5.449 0.315 0.948 2.313 3.849 -
[1] 韩渭敏, 程晓良. 变分不等式简介: 基本理论数值分析及应用[M]. 北京: 高等教育出版社, 2007.HAN Weimin, CHENG Xiaoliang. Introduction to Variational Inequalities: Numerical Analysis and Application of Basic Theory[M]. Beijing: Higher Education Press, 2007. (in Chinese) [2] 王耀东. 变分不等方程[M]. 北京: 高等教育出版社, 1987.WANG Yaodong. Equation of Variational Inequality[M]. Beijing: Higher Education Press, 1987. (in Chinese) [3] 赵雪芬, 李星. 带裂纹十次对称二维准晶平面弹性的无摩擦接触问题[J]. 应用数学和力学, 2019, 40(2): 223-236. doi: 10.21656/1000-0887.390127ZHAO Xuefen, LI Xing. A frictionless contact problem of 2D decagonal quasicrystal plane elasticity with cracks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 223-236. (in Chinese) doi: 10.21656/1000-0887.390127 [4] kANNO Y. An accelerated Uzawa method for application to frictionless contact problem[J]. Optimization Letters, 2020, 14(7): 1845-1854. doi: 10.1007/s11590-019-01481-2 [5] HUANG Z J, CHENG X L. An accelerated method of Uzawa algorithm in contact problems[J]. Computers Mathematics With Applications, 2022, 127 : 97-104. doi: 10.1016/j.camwa.2022.09.030 [6] GLOWINSkI R, LE TALLEC P. Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics[M]//Studies in Applied and Numerical Mathematics. SIAM, 1989. [7] kOkO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2343-2356. doi: 10.1016/j.cam.2010.10.032 [8] kOkO J. Alternating direction method of multiplier for the unilateral contact problem with an automatic penalty parameter selection[J]. Applied Mathematical Modelling, 2020, 78 : 706-723. doi: 10.1016/j.apm.2019.09.031 [9] STADLER G. Path-following and augmented Lagrangian methods for contact problems in linear elasticity[J]. Journal of Computational and Applied Mathematics, 2007, 203(2): 706-723. [10] ZHANG S G, LI X L. Boundary augmented Lagrangian method for contact problems in linear elasticity[J]. Engineering Analysis With Boundary Elements, 2015, 61 : 127-133. doi: 10.1016/j.enganabound.2015.07.006 [11] ZHANG S G, LI X L. A self-adaptive projection method for contact problems with the BEM[J]. Applied Mathematical Modelling, 2018, 55 : 145-159. doi: 10.1016/j.apm.2017.10.022 [12] ZHANG S G, LI X L. Self-adaptive projection and boundary element methods for contact problems with Tresca friction[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 68 : 72-85. doi: 10.1016/j.cnsns.2018.05.001 [13] GLOWINSkI R. Numerical Methods for Nonlinear Variational Problems[M]. Berlin: Springer-Verlag, 2008. [14] 郭楠馨, 张守贵. 自由边界问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2019, 40(6): 682-693. doi: 10.21656/1000-0887.390347GUO Nanxin, ZHANG Shougui. A self-adaptive Uzawa block relaxation algorithm for free boundary problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 682-693. (in Chinese) doi: 10.21656/1000-0887.390347 [15] HE B S. Self-adaptive operator splitting methods for monotone variational inequalities[J]. Numerische Mathematik, 2013, 94(4): 715-737. [16] 王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018, 39(12): 1410-1425. doi: 10.21656/1000-0887.380334WANG Xin, GUO ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1410-1425. (in Chinese) doi: 10.21656/1000-0887.380334 [17] ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98(4): 671-689. doi: 10.1080/00207160.2020.1777402 [18] 张茂林, 冉静, 张守贵. 具有滑动边界条件Stokes问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2021, 42(2): 188-198. doi: 10.21656/1000-0887.410170ZHANG Maolin, RAN Jing, ZHANG Shougui. A self-adaptive Uzawa block relaxation method for Stokes problems with slip boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(2): 188-198. (in Chinese) doi: 10.21656/1000-0887.410170