留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空穴效应下泡沫金属复合相变材料热性能数值模拟

潘涵婷 许多 徐洪涛 罗祝清

潘涵婷, 许多, 徐洪涛, 罗祝清. 空穴效应下泡沫金属复合相变材料热性能数值模拟[J]. 应用数学和力学, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082
引用本文: 潘涵婷, 许多, 徐洪涛, 罗祝清. 空穴效应下泡沫金属复合相变材料热性能数值模拟[J]. 应用数学和力学, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082
PAN Hanting, XU Duo, XU Hongtao, LUO Zhuqing. Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects[J]. Applied Mathematics and Mechanics, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082
Citation: PAN Hanting, XU Duo, XU Hongtao, LUO Zhuqing. Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects[J]. Applied Mathematics and Mechanics, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082

空穴效应下泡沫金属复合相变材料热性能数值模拟

doi: 10.21656/1000-0887.440082
基金项目: 

上海市自然科学基金(面上项目) 20ZR1438700

详细信息
    作者简介:

    潘涵婷(1999—),女,硕士生(E-mail: 1041580589@qq.com)

    通讯作者:

    徐洪涛(1976—),男,教授,博士,博士生导师(通讯作者. E-mail: htxu@usst.edu.cn)

  • 中图分类号: TK124; O351.3

Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects

  • 摘要: 在三维泡沫金属复合相变材料(PCM)基础上,构建了随机分布空穴模型,采用多松弛时间格子Boltzmann方法,从孔隙尺度分析了不同空穴体积分数、分布位置及泡沫金属与PCM导热系数比下的空穴效应. 结果表明,随着空穴体积分数的增加,减缓了复合PCM的传热速度,并降低了潜热储能的能力. 在Fourier数Fo=0.7时刻下,当空穴体积分数分别为2.4%,7.6%和11.7%时,相较于无空穴情况下的储热量分别减少了3.2%,9.0%和13.0%. 当体积分数为3%的空穴集中在热壁面侧时,其对复合PCM熔化过程的阻碍作用最显著,此时空穴层相当于绝热层,使复合PCM的整体熔化时间延长了6.1%. 为削弱空穴效应,可选择导热系数比超过100的泡沫金属骨架来提高其在传热中的主导作用.
  • 图  1  三维模型介绍

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The introduction of three-dimensional models

    图  2  界面耦合传热验证

    Figure  2.  Verification of the interface coupled heat transfer

    图  3  三维固液相变验证

    Figure  3.  The 3D solid-liquid phase change verification

    图  4  网格无关性验证

    Figure  4.  The grid independence check

    图  5  矩形腔整体及截面处温度分布图

    Figure  5.  Temperature distributions of the whole and the cross section of the rectangular cavity

    图  6  不同ξ下复合PCM的熔化参考比X和潜热储能量Q

    Figure  6.  The melting reference ratio X and latent heat storage energy Q of composite PCMs with different ξ values

    图  7  不同ξ下复合PCM平均温度和热壁面平均Nusselt数

    Figure  7.  The average temperature and Nusselt number of composite PCMs with different ξ values

    图  8  不同空穴分布位置下的截面y=35处的温度分布图(ξ=3%)

    Figure  8.  Temperature contours at y=35 with different void distribution locations(ξ=3%)

    图  9  不同空穴分布位置下复合PCM的熔化参考比X和完全熔化时间

    Figure  9.  The melting reference ratio X and total melting time with different cavity distribution locations

    图  10  不同ks下复合PCM的熔化参考比X和完全熔化时间

    Figure  10.  The melting reference ratio X and total melting time of composite PCMs with different thermal conductivity ratios

  • [1] LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536. doi: 10.1016/j.apenergy.2014.09.081
    [2] OPEYEMI B M. Path to sustainable energy consumption: the possibility of substituting renewable energy for non-renewable energy[J]. Energy, 2021, 228: 120519. doi: 10.1016/j.energy.2021.120519
    [3] SHAMBERGER P J, BRUNO N M. Review of metallic phase change materials for high heat flux transient thermal management applications[J]. Applied Energy, 2020, 258: 113955. doi: 10.1016/j.apenergy.2019.113955
    [4] XU H T, WANG N, ZHANG C Y, et al. Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies[J]. Energy Conversion and Management, 2021, 229: 113660. doi: 10.1016/j.enconman.2020.113660
    [5] MAHMOUD M, RAMADAM M, PULLEN K, et al. Waste Heat Recovery Applications Incorporating Phase Change Materials[M]//Reference Module in Materials Science and Materials Engineering. Elsevier, 2021.
    [6] 黄钦, 余凌峰, 陈凯. 相变材料耦合冷板电池热管理系统的优化设计[J]. 应用数学和力学, 2022, 43(11): 1195-1202. doi: 10.21656/1000-0887.430278

    HUANG Qin, YU Lingfeng, CHEN Kai. Design of the battery thermal management system with phase change material coupled cold plates[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1195-1202. (in Chinese) doi: 10.21656/1000-0887.430278
    [7] 潘艾刚, 王俊彪, 张贤杰. 相变温控技术在航天热控领域中的应用现状及展望[J]. 材料导报, 2013, 27(23): 113-119.

    PAN Aigang, WANG Junbiao, ZHANG Xianjie. A review on development and applications of metal phase change technology in thermal control for aeronautics[J]. Materials Reports, 2013, 27(23): 113-119. (in Chinese)
    [8] HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28: 101235. doi: 10.1016/j.est.2020.101235
    [9] AL-JETHELAH M, EBADI S, VENKATESHWAR K, et al. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation[J]. Applied Thermal Engineering, 2019, 148: 1029-1042. doi: 10.1016/j.applthermaleng.2018.11.121
    [10] HUANG X P, SUN C, CHEN Z Q, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021, 170: 107151. doi: 10.1016/j.ijthermalsci.2021.107151
    [11] YANG B, ZHANG R R, GAO Z, et al. Effect of nanoparticles and metal foams on heat transfer properties of PCMs[J]. International Journal of Thermal Sciences, 2022, 179: 107567. doi: 10.1016/j.ijthermalsci.2022.107567
    [12] 马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201.

    MA Yupu, HU Jinyan, CHEN Qi, et al. Study on heat storage performance enhancement of paraffin by metallic material[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2196-2201. (in Chinese)
    [13] CHEN L, WANG L, WANG Y F, et al. Influence of phase change material volume shrinkage on the cyclic process of thermal energy storage: a visualization study[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 203: 117776.
    [14] 徐伟强, 袁修干, 邢玉明, 等. 空穴分布对固液相变蓄热过程的影响[J]. 太阳能学报, 2011, 32(2): 240-245.

    XU Weiqiang, YUAN Xiugan, XING Yuming, et al. Effects of void distribution on solid-liquid phase change thermal storage[J]. Acta Energiae Solaris Sinica, 2011, 32(2): 240-245. (in Chinese)
    [15] CHIEW J, CHIN C S, TOH W D, et al. Low-temperature macro-encapsulated phase change material based thermal energy storage system without air void space design[J]. Applied Thermal Engineering, 2018, 141: 928-938. doi: 10.1016/j.applthermaleng.2018.06.060
    [16] JANGHEL D, SAHA S K, KARAGADDE S. Effect of shrinkage void on thermal performance of pure and binary phase change materials based thermal energy storage system: a semi-analytical approach[J]. Applied Thermal Engineering, 2020, 167: 114706. doi: 10.1016/j.applthermaleng.2019.114706
    [17] SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al. Effect of internal void placement on the heat transfer performance-encapsulated phase change material for energy storage[J]. Renewable Energy, 2015, 78: 438-447. doi: 10.1016/j.renene.2015.01.035
    [18] LI X Y, NIU C, LI X X, et al. Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials[J]. Applied Energy, 2020, 275: 115302. doi: 10.1016/j.apenergy.2020.115302
    [19] CHEN L, KANG Q J, MU Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. doi: 10.1016/j.ijheatmasstransfer.2014.04.032
    [20] SO R M C, LEUNG R C K, KAM E W S, et al. Progress in the development of a new lattice Boltzmann method[J]. Computers & Fluids, 2019, 190: 440-469.
    [21] REN Q L, CHAN C. GPU accelerated numerical study of PCM melting process in an enclosure with internal fins using lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 100: 522-535. doi: 10.1016/j.ijheatmasstransfer.2016.04.059
    [22] HUANG R Z, WU H Y, CHENG P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301. doi: 10.1016/j.ijheatmasstransfer.2012.12.027
    [23] LI D, TONG Z X, REN Q L, et al. Three-dimensional lattice Boltzmann models for solid-liquid phase change[J]. International Journal of Heat & Mass Transfer, 2017, 115(Part B): 1334-1347.
    [24] YOSHIDA H, KOBAYASHI T, HAYASHI H, et al. Boundary condition at a two-phase interface in the lattice boltzmann method for the convection-diffusion equation[J]. Physical Review E, 90(1): 013303.
  • 加载中
图(10)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  163
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-09-14
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回