[1] |
LIANG H, CHAI Z H, SHI B C, et al. Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows[J]. Physical Review E, 2014, 90(6): 063311. doi: 10.1103/PhysRevE.90.063311
|
[2] |
CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J]. Physical Review E, 2018, 98(6): 063314. doi: 10.1103/PhysRevE.98.063314
|
[3] |
SHI J, MA Q, CHEN Z. Numerical study on bubble motion in pore structure under microgravity using the lattice Boltzmann method[J]. Microgravity Science and Technology, 2019, 31(2): 207-222. doi: 10.1007/s12217-019-9681-6
|
[4] |
严裕, 娄钦, 陈家豪. 双液滴在具有接触角滞后性微通道内的运动行为研究[J]. 应用数学和力学, 2023, 44(3): 304-318. doi: 10.21656/1000-0887.430165YAN Yu, LOU Qin, CHEN Jiahao. Lattice Boltzmann study on the motion of dual droplets in microchannels with contact angle hysteresis[J]. Applied Mathematics and Mechanics, 2023, 44(3): 304-318. (in Chinese)) doi: 10.21656/1000-0887.430165
|
[5] |
梁佳, 高明, 陈露, 等. 基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究[J]. 应用数学和力学, 2022, 43(1): 63-76. doi: 10.21656/1000-0887.420076LIANG Jia, GAO Ming, CHEN Lu, et al. Study on droplets impacting on orifice plates with different wettabilities based on the lattice Boltzmann method[J]. Applied Mathematics and Mechanics, 2022, 43(1): 63-76. (in Chinese)) doi: 10.21656/1000-0887.420076
|
[6] |
HALLMARK B, CHEN C H, DAVIDSON J F. Experimental and simulation studies of the shape and motion of an air bubble contained in a highly viscous liquid flowing through an orifice constriction[J]. Chemical Engineering Science, 2019, 206: 272-288. doi: 10.1016/j.ces.2019.04.043
|
[7] |
DAWSON G, HANER E, JUEL A. Extreme deformation of capsules and bubbles flowing through a localised constriction[J]. Procedia IUTAM, 2015, 16: 22-32. doi: 10.1016/j.piutam.2015.03.004
|
[8] |
LOSI G, POESIO P. An experimental investigation on the effect of viscosity on bubbles moving in horizontal and slightly inclined pipes[J]. Experimental Thermal and Fluid Science, 2016, 75: 77-88. doi: 10.1016/j.expthermflusci.2016.01.010
|
[9] |
WU Y, FANG S, DAI C, et al. Investigation on bubble snap-off in 3-D pore-throat micro-structures[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 69-74. doi: 10.1016/j.jiec.2017.05.019
|
[10] |
CHAI Z, SHI B, GUO Z. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations[J]. Journal of Scientific Computing, 2016, 69(1): 355-390. doi: 10.1007/s10915-016-0198-5
|
[11] |
INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of Computational Physics, 2004, 198(2): 628-644. doi: 10.1016/j.jcp.2004.01.019
|
[12] |
YI J, XING H. Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method[J]. Chemical Engineering Science, 2017, 161: 57-66. doi: 10.1016/j.ces.2016.12.016
|
[13] |
SANKARANARAYANAN K, SHAN X, KEVREKIDIS I G, et al. Bubble flow simulations with the lattice Boltzmann method[J]. Chemical Engineering Science, 1999, 54(21): 4817-4823. doi: 10.1016/S0009-2509(99)00199-2
|
[14] |
YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. doi: 10.1063/1.2187070
|
[15] |
LEE T, LIN C L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J]. Journal of Computational Physics, 2005, 206(1): 16-47. doi: 10.1016/j.jcp.2004.12.001
|
[16] |
LEE H G, KIM J. An efficient numerical method for simulating multiphase flows using a diffuse interface model[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 423: 33-50. doi: 10.1016/j.physa.2014.12.027
|
[17] |
LIANG H, SHI B C, CHAI Z H. Lattice Boltzmann modeling of three-phase incompressible flows[J]. Physical Review E, 2016, 93(1): 013308. doi: 10.1103/PhysRevE.93.013308
|
[18] |
LOU Q, YAN Y, XU H. Numerical simulation of bubble rising in porous media using lattice Boltzmann method[J]. Journal of Applied Physics, 2022, 132(19): 194703. doi: 10.1063/5.0127791
|
[19] |
LIANG H, XU J R, CHEN J X, et al. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows[J]. Physical Review E, 2018, 97(3): 033309. doi: 10.1103/PhysRevE.97.033309
|
[20] |
ZHANG S, TANG J, WU H. Wetting boundary schemes in modified phase-field lattice Boltzmann method for binary fluids with large density ratios[J]. Computers & Mathematics With Applications, 2022, 113: 243-253.
|
[21] |
YI T, YANG G, WANG B, et al. Dynamics of a gas bubble penetrating through porous media[J]. Physics of Fluids, 2022, 34(1): 012103. doi: 10.1063/5.0076298
|
[22] |
MORAN H R, MAGNINI M, MARKIDES C N, et al. Inertial and buoyancy effects on the flow of elongated bubbles in horizontal channels[J]. International Journal of Multiphase Flow, 2021, 135: 103468.
|