Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion
-
摘要: 针对等直截面超燃冲压发动机燃烧室中火焰闪回低频燃烧振荡现象,采用延迟分离涡模拟(DDES)的混合RANS/LES方法结合PaSR湍流燃烧模型进行了三维模拟研究.计算得到了完整的燃烧振荡周期,与实验中的低频燃烧振荡现象较为一致.低频燃烧振荡周期可分为凹腔火焰稳定、火焰回传、火焰吹熄3个阶段.通过分析低频燃烧振荡周期中不同阶段的燃烧流动状态,给出了可能的低频燃烧振荡的形成机制.研究结果表明,在整个低频燃烧振荡周期中燃烧室内没有发生热壅塞,燃烧室提供的背压和燃烧释热是燃烧室内形成低频燃烧振荡的关键.Abstract: Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.
-
Key words:
- flame flashback /
- low-frequency combustion oscillation /
- combustion flow field /
- choking
-
表 1 隔离段入口及燃料喷口参数
Table 1. Isolator inlet and jet parameters
pressure P/kPa velocity v/(m/s) temperature T/K YO2 YH20 YCO2 YN2 YC2H4 inlet 89.12 1 323 719.3 0.233 8 0.101 6 0.062 2 0.602 4 0 jet 847.28 315 265.2 0 0 0 0 1 -
[1] 王强, 徐涛, 姚永涛. 高超声速流动与换热数值仿真研究[J]. 应用数学和力学, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346WANG Qiang, XU Tao, YAO Yongtao. Numerical study on hypersonic flow and aerodynamic heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. (in Chinese) doi: 10.21656/1000-0887.420346 [2] CHOUBEY G, DEUARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine: a brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895-13909. doi: 10.1016/j.ijhydene.2019.04.003 [3] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Hydrogen fuel in scramjet engines: a brief review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16799-16815. doi: 10.1016/j.ijhydene.2020.04.086 [4] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001 [5] DING Y, YUE X, CHEN G, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. doi: 10.1016/j.cja.2021.10.037 [6] LIU Q, BACCARELLA D, LEE T. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. doi: 10.1016/j.paerosci.2020.100636 [7] BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization in scramjets: an overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877. doi: 10.2514/2.5818 [8] WANG Z, WANG H, SUN M. Review of cavity-stabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers (Part G): Journal of Aerospace Engineering, 2014, 228(14): 2718-2735. doi: 10.1177/0954410014521172 [9] OUYANG H, LIU W, SUN M. The large-amplitude combustion oscillation in a single-side expansion scramjet combustor[J]. Acta Astronautica, 2015, 117: 90-98. doi: 10.1016/j.actaastro.2015.07.016 [10] SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. doi: 10.1016/j.paerosci.2019.02.001 [11] WANG H, WANG Z, SUN M. Experimental study of oscillations in a scramjet combustor with cavity flameholders[J]. Experimental Thermal and Fluid Science, 2013, 45: 259-263. doi: 10.1016/j.expthermflusci.2012.10.013 [12] ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology, 2019, 87: 190-206. doi: 10.1016/j.ast.2019.02.018 [13] JEONG S M, LEE J H, CHOI J Y. Numerical investigation of low-frequency instability and frequency shifting in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2022, 39(3): 3107-3116. [14] NAKAYA S, YAMANA H, TSUE M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3869-3680. doi: 10.1016/j.proci.2020.07.129 [15] LAURENCE S, KARL S, SCHRAMM J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722: 85-120. doi: 10.1017/jfm.2013.56 [16] MA F, LI J, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2012. [17] IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97: 1-21. doi: 10.1016/j.paerosci.2017.12.001 [18] DU G M, YE T, LE J L, et al. Experimental investigation of effects of air throttling on combustion characteristics in a kerosene-fueled scramjet at Ma7[J]. Acta Astronautica, 2023, 203: 447-453. doi: 10.1016/j.actaastro.2022.12.025 [19] 李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanics, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012 [20] ZHAO G Y, SUN M B, SONG X L, et al. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow[J]. Acta Astronautica, 2019, 155: 255-263. doi: 10.1016/j.actaastro.2018.12.011 [21] FROST M A, GANGURDE D Y, PAULL A, et al. Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow[J]. AIAA Journal, 2009, 47(4): 1050-1053. doi: 10.2514/1.40868 [22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992. [23] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0 [24] SPALART P. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Advances in DNS/LES: Proceedings of the First AFOSR International Conference on DNS/LES. Ruston, Louisiana, USA, 1997. [25] GOLOVITCHEV V I, NORDIN N, JARNICKI R, et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model[J]. Journal of Fuels and Lubricants, 2000, 109: 1391-1405. [26] KORNEV N, SHCHUKIN E, TARANOV E, et al. Development and implementation of inflow generator for LES and DNS applications in OpenFOAM[C]//Proceedings of the Open Source CFD International Conference. 2009. [27] SINGH D, JACHIMOWSKI C J. Quasiglobal reaction model for ethylene combustion[J]. AIAA Journal, 1994, 32(1): 213-216. doi: 10.2514/3.11972 [28] 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 博士学位论文. 长沙: 国防科技大学, 2019.ZHAO Guoyan. On the excitation of flame flashback and flame propagation mechanism in supersonic flow[D]. PhD Thesis. Changsha: National University of Defense Technology, 2019. (in Chinese)