留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多连通区域到狭缝圆环域的共形映射计算法

赵鑫 吕毅斌

赵鑫, 吕毅斌. 多连通区域到狭缝圆环域的共形映射计算法[J]. 应用数学和力学, 2024, 45(2): 245-252. doi: 10.21656/1000-0887.440134
引用本文: 赵鑫, 吕毅斌. 多连通区域到狭缝圆环域的共形映射计算法[J]. 应用数学和力学, 2024, 45(2): 245-252. doi: 10.21656/1000-0887.440134
ZHAO Xin, LÜ Yibin. Numerical Conformal Mappings From Multiply Connected Regions Onto Annular Domains With Slits[J]. Applied Mathematics and Mechanics, 2024, 45(2): 245-252. doi: 10.21656/1000-0887.440134
Citation: ZHAO Xin, LÜ Yibin. Numerical Conformal Mappings From Multiply Connected Regions Onto Annular Domains With Slits[J]. Applied Mathematics and Mechanics, 2024, 45(2): 245-252. doi: 10.21656/1000-0887.440134

多连通区域到狭缝圆环域的共形映射计算法

doi: 10.21656/1000-0887.440134
基金项目: 

国家自然科学基金 11461037

云南省基础研究计划 202101BE070001-050

详细信息
    作者简介:

    赵鑫(1998—),男,硕士生(E-mail: zhaoxin1@stu.kust.edu.cn)

    通讯作者:

    吕毅斌(1972—),男,副教授,硕士生导师(通讯作者. E-mail: luyibin@kust.edu.cn)

  • 中图分类号: O241

Numerical Conformal Mappings From Multiply Connected Regions Onto Annular Domains With Slits

  • 摘要: 基于模拟电荷法,研究了将具有高连通度的有界区域映射到带有对数螺旋狭缝单位圆环域的共形映射计算法.提出利用BiCR(bi-conjugate residual)算法求解由Dirichlet边界条件建立的约束方程组,得到模拟电荷,进而构造出高精度的近似共形映射函数.数值实验验证了该文算法的有效性,并成功将该共形映射计算法应用到绕流仿真模拟中,模拟了有界高连通度区域内螺旋点涡的绕流.
  • 图  1  基于模拟电荷法的有界高连通度区域共形映射

    Figure  1.  Conformal mappings of bounded high connectivity regions based on the charge simulation method

    图  2  有界10连通区域网格图

    Figure  2.  The grid diagram of bounded 10 connected domains

    图  3  带有对数螺旋狭缝的单位圆环

    Figure  3.  The unit circular ring with logarithmic spiral slits

    图  4  例1中共形映射误差曲线

    Figure  4.  The conformal mapping error curves in example 1

    图  5  例1中螺旋点涡的绕流模拟

    Figure  5.  Simulation of flow over the spiral point vortex in example 1

    图  6  有界16连通区域网格图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The grid diagram of bounded 16 connected domains

    图  7  带有对数螺旋狭缝的单位圆环

    Figure  7.  The unit circular ring with logarithmic spiral slits

    图  8  例2中共形映射误差曲线

    Figure  8.  The conformal mapping errors curves in example 2

    图  9  例2中螺旋点涡的绕流模拟

    Figure  9.  Simulation of flow over the spiral point vortex in example 2

  • [1] MURASHIGE S, CHOI W. Parasitic capillary waves on small-amplitude gravity waves with a linear shear current[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1217. doi: 10.3390/jmse9111217
    [2] NASSER M, VUORINEN M. Computation of conformal invariants[J]. Applied Mathematics and Computation, 2021, 389(2): 125617.
    [3] 孙烨丽, 沈璐璐, 杨博. 功能梯度板中Griffith裂纹尖端应力场的三维解析研究[J]. 应用数学和力学, 2021, 42(1): 36-48. doi: 10.21656/1000-0887.410143

    SUN Yeli, SHEN Lulu, YANG Bo. 3D analytical solutions of stress fields at Griffith crack tips in functionally graded plates[J]. Applied Mathematics and Mechanics, 2021, 42(1): 36-48. (in Chinese) doi: 10.21656/1000-0887.410143
    [4] 曾祥太, 吕爱钟. 含有非圆形双孔的无限平板中应力的解析解研究[J]. 力学学报, 2019, 51(1): 170-181. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901018.htm

    ZENG Xiangtai, LV Aizhong. Analytical stress solution research on an infinte plate contianing two non-circular holes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 170-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901018.htm
    [5] 李岩松, 陈寿根. 寒区非圆形隧道冻胀力的解析解[J]. 力学学报, 2020, 52(1): 196-207. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001018.htm

    LI Yansong, CHEN Shougen. Analytical solution of frost heaving force in non-circular cold region tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001018.htm
    [6] HAKULA H, NASYROV S, VUORINEN M. Conformal moduli of symmetric circular quadrilaterals with cusps[J]. Electronic Transactions on Numerical Analysis Etna, 2021, 54: 460-482. doi: 10.1553/etna_vol54s460
    [7] CONSTANTIN A, STRAUSS W, VARVARUCA E. Large-amplitude steady downstream water waves[J]. Communications in Mathematical Physics, 2021, 387(1): 237-266. doi: 10.1007/s00220-021-04178-9
    [8] SYMM G T. An integral equation method in conformal mapping[J]. Numerische Mathematik, 1966, 9(3): 250-258. doi: 10.1007/BF02162088
    [9] SYMM G T. Numerical mapping of exterior domains[J]. Numerische Mathematik, 1967, 10(5): 437-445. doi: 10.1007/BF02162876
    [10] SYMM G T. Conformal mapping of doubly-connected domains[J]. Numerische Mathematik, 1969, 13(5): 448-457. doi: 10.1007/BF02163272
    [11] AMANO K. Numerical conformal mappings of exterior domains based on the charge simulation method[J]. Information Processing Society of Japan Journal, 1988, 29(1): 62-72.
    [12] 伍康, 吕毅斌, 石允龙, 等. 有界多连通区域数值保角变换的GMRES(m)法[J]. 应用数学和力学, 2022, 43(9): 1026-1033. doi: 10.21656/1000-0887.420305

    WU Kang, LV Yibin, SHI Yunlong, et al. The GMRES(m) method for numerical conformal mapping of bounded multi-connected domains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1026-1033. (in Chinese) doi: 10.21656/1000-0887.420305
    [13] AMANO K, OKANO D. Numerical conformal mappings onto the canonical slit domains[J]. Theoretical and Applied Mechanics Japan, 2012, 60: 317-332.
    [14] AMANO K. A charge simulation method for numerical conformal mapping onto circular and radial slit domains[J]. SIAM Journal on Scientific Computing, 1998, 19(4): 1169-1187. doi: 10.1137/S1064827595294307
    [15] OKANO D, OGATA H, AMANO K, et al. Numerical conformal mappings of bounded multiply connected domains by the charge simulation method[J]. Journal of Computational and Applied Mathematics, 2003, 159(1): 109-117. doi: 10.1016/S0377-0427(03)00572-7
    [16] NASSER M M S. A boundary integral equation for conformal mapping of bounded multiply connected regions[J]. Computational Methods and Function Theory, 2009, 9(1): 127-143. doi: 10.1007/BF03321718
    [17] NASSER M M S, KALMOUN E M. Application of integral equations to simulate local fields in carbon nanotube reinforced composites[R/OL]. 2019[2023-11-06]. https://arxiv.org/pdf/1910.10614.pdf.
    [18] PORTER R M. An interpolating polynomial method for numerical conformal mapping[J]. SIAM Journal on Scientific and Statistical Computing, 2001, 23(3): 1027-1041. doi: 10.1137/S1064827599355256
    [19] HAKULA H, QUACH T, RASILA A. Conjugate function method and conformal mappings in multiply connected domains[J]. SIAM Journal on Scientific and Statistical Computing, 2019, 41(3): 1753-1776. doi: 10.1137/17M1124164
    [20] KOEBE P. Abhandlungen zur theorie der konformen abbildung Ⅳ: abbildung mehrfach zusamme-nhängender schlichter bereiche auf schlitzbereiche[J]. Acta Mathematica, 1916, 41: 305-344. doi: 10.1007/BF02422949
    [21] CROWDY D G, MARSHALL J S. Conformal mappings between canonical multiply connected domains[J]. Computational Methods and Function Theory, 2006, 6(1): 59-76. doi: 10.1007/BF03321118
    [22] KOKKINOS C A, PAPAMICHAEL N, SLDERIDIS A B. An orthonormalization method for the approximate conformal mapping of multiply-connected domains[J]. IMA Journal of Numerical Analysis, 1990, 10(3): 343-359. doi: 10.1093/imanum/10.3.343
    [23] MAYO A. Rapid methods for the conformal mapping of multiply connected regions[J]. Journal of Computational and Applied Mathematics, 1986, 14(1/2): 143-153.
    [24] REICHEL L. A fast method for solving certain integral equations of the first kind with application to conformal mapping[J]. Journal of Computational and Applied Mathematics, 1986, 14(1/2): 125-142.
    [25] SANGAWI A W K, MURID A H M, NASSER M M S. Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits[J]. Applied Mathematics and Computation, 2011, 218(5): 2055-2068.
    [26] WEN G C. Conformal Mappings and Boundary Value Problems[M]. American Mathematical Society, 1992.
    [27] SOGABE T, SUGIHARA M, ZHANG S L. An extension of the conjugate residual method to nonsymmetric linear systems[J]. Journal of Computational and Applied Mathematics, 2008, 226(1): 103-113.
    [28] MUROTA K. Comparison of conventional and "invariant" schemes of fundamental solutions method for annular domains[J]. Japan Journal of Industrial and Applied Mathematics, 1995, 12(1): 61-85. doi: 10.1007/BF03167382
    [29] NEILL D R, HAYATDAVOODI M, ERTEKIN R C. On solitary wave diffraction by multiple, inline vertical cylinders[J]. Nonlinear Dynamics, 2018, 91(2): 975-994. doi: 10.1007/s11071-017-3923-1
    [30] YAO W, JAIMAN R K. Stability analysis of the wake-induced vibration of tandem circular and square cylinders[J]. Nonlinear Dynamics, 2019, 95(1): 13-28. doi: 10.1007/s11071-018-4547-9
    [31] ZHANG Z, ZHANG X, GE Y. Motion-induced vortex shedding and lock-in phenomena of a rectangular section[J]. Nonlinear Dynamics, 2020, 102(4): 2267-2280. doi: 10.1007/s11071-020-06080-w
    [32] ROSSOW V J. Lift enhancement by an externally trapped vortex[J]. Journal of Aircraft, 1978, 15(9): 77-672.
    [33] LENTINK D, DICKSON W B, VAN LEEUWEN J L, et al. Leading-edge vortices elevate lift of autorotating plant seeds[J]. Science, 2009, 324(5933): 1438-1440. doi: 10.1126/science.1174196
    [34] 吕毅斌, 赖富明, 王樱子, 等. 基于GMRES(m)法的双连通区域数值保角变换的计算法[J]. 数学杂志, 2016, 36(5): 1028-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZZ201605017.htm

    LV Yibin, LAI Fuming, WANG Yingzi, et al. The GMRES(m) method for numerical conformal mapping of doubly-connected domain[J]. Journal of Mathematics, 2016, 36(5): 1028-1034. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXZZ201605017.htm
  • 加载中
图(9)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  90
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-11-06
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回