留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究

崔有江 王保林 王开发

崔有江, 王保林, 王开发. 多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究[J]. 应用数学和力学, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147
引用本文: 崔有江, 王保林, 王开发. 多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究[J]. 应用数学和力学, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147
CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147
Citation: CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147

多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究

doi: 10.21656/1000-0887.440147
基金项目: 

国家自然科学基金项目 12102104

国家自然科学基金项目 11972137

广东省基础与应用基础研究基金 2022A1515240072

广东省基础与应用基础研究基金 2022B1515020099

广东省基础与应用基础研究基金 2022A1515010801

详细信息
    作者简介:

    崔有江(1990—),男,副研究员,博士(E-mail: cuiyoujiang@dgut.edu.cn)

    通讯作者:

    王保林(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbl@hit.edu.cn)

  • 中图分类号: O341

Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators

  • 摘要: 热电器件能把废热转化为电能,减少二氧化碳排放,符合国家节能减排、逐步实现碳中和的发展需求. 该文通过建立多孔热电器件的热、电传导分析模型,解释了多孔热电泡沫高输出功率的内在机制,并揭示了几何结构及孔隙率对断裂破坏的影响机理. 在此基础上,阐明了断裂破坏对器件转化性能的影响规律. 研究发现,随着孔隙率的增加,热电泡沫与金属层之间的界面剪切应力减小. 同时,只要多孔热电泡沫的内部裂纹开始扩展就不会停止,直至器件完全破坏. 此外,随着裂纹扩展,输出功率呈现先增加后减小的趋势. 这是因为裂纹的形成间接增大了热电泡沫的孔隙率,导致器件与废热的接触面积增大,进而提高热电器件的输出功率;随着裂纹进一步扩展,其必然减弱热电器件的导热和导电性能,进而减小热电器件的输出功率.
  • 图  1  多孔热电泡沫样品与多孔泡沫热电器件用于温差发电[18]

    Figure  1.  Samples of the porous thermoelectric foam and the thermoelectric power generation[18]

    图  2  多孔泡沫热电器件工作原理示意图

    Figure  2.  Schematic diagram of the circuit for the porous thermoelectric foam for power generation

    图  3  二分法求解Th数值解流程图

    Figure  3.  The flowchart for the bisection method to obtain numerical solution of Th

    图  4  层间剪切应力τ1和输出功率Pout随孔隙率的变化曲线

    Figure  4.  Distributions of interlaminar shear stress τ1 and power output Pout vs. the porosity

    图  5  裂纹长度对应力强度因子K和输出功率Pout的影响规律(Tg=900 K)

    Figure  5.  Distributions of stress intensity factor K and power output Pout vs. the crack length (Tg=900 K)

    表  1  致密碲化铅和铜的材料参数[24]

    Table  1.   Material properties of dense lead telluride and copper[24]

    parameter value
    thermal conductivity kd/(W·m-1·K-1) 1.73
    electrical resistivity ρd/(Ω-1·m-1) 6.37 ×10-4
    Seebeck coefficient S/(μV·K-1) 274
    thermal expansion coefficient α1/K-1 4.1 ×10-5
    Young’s modulus Ed/GPa 51.76
    Poisson’s ratio υ1 0.28
    thermal expansion coefficient α0/K-1 1.76 ×10-5
    Young’s modulus E0/GPa 119
    Poisson’s ratio υ0 0.326
    下载: 导出CSV
  • [1] CUI Y J, WANG B L, WANG K F, et al. Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting[J]. International Journal of Heat and Mass Transfer, 2019, 137: 979-989. doi: 10.1016/j.ijheatmasstransfer.2019.03.157
    [2] CUI Y J, WANG B L, WANG K F, et al. Fracture mechanics analysis of delamination in a thermoelectric pn-junction sandwiched by an insulating layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(10): 1477-1484. doi: 10.1007/s10483-018-2379-8
    [3] CUI Y J, WANG B L, WANG K F, et al. Theoretical model of fatigue crack growth of a thermoelectric pn-junction bonded to an elastic substrate[J]. Mechanics of Materials, 2020, 151: 103623. doi: 10.1016/j.mechmat.2020.103623
    [4] SOLEIMANI Z, ZORAS S, CERANIC B, et al. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials[J]. Nano Energy, 2021, 89(A): 106325.
    [5] LU Y, LI X, CAI K, et al. Enhanced-Performance PEDOT: PSS/Cu2Se-based composite films for wearable thermoelectric power generators[J]. ACS Applied Materials and Interfaces, 2021, 12: 631-638.
    [6] WANG L P, HU B L, ZHANG F Y, et al. A highly stable elastic electrode via direct covalent crosslinking for strain sensors[J]. Journal of Materials Chemistry C, 2023, 12: 4235-4242.
    [7] XIN B B, WANG L, FEBVRIER A L, et al. Mechanically flexible thermoelectric hybrid thin films by introduction of PEDOT: PSS in nanoporous Ca3Co4O9[J]. ACS Omega, 2022, 7(27): 23988-23994. doi: 10.1021/acsomega.2c02875
    [8] KARALIS G, TZOUNIS L, MYTAFIDES C K, et al. A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS[J]. Applied Energy, 2021, 294: 117004. doi: 10.1016/j.apenergy.2021.117004
    [9] LIU J, LIU Q, LIN S P, et al. Wearable thermoelectric generators: materials, structures, fabrications, and applications[J]. Physica Status Solidi-Rapid Research Letters, 2023, 17(7): 2200502. doi: 10.1002/pssr.202200502
    [10] RAMESH V P, SARGOLZAEIAVAL Y, NEUMANN T, et al. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler[J]. NPJ Flexible Electronics, 2021, 5(1): 5. doi: 10.1038/s41528-021-00101-3
    [11] CUI Y J, LIU C, WANG K F, et al. Effect of negative Poisson's ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators[J]. Engineering Fracture Mechanics, 2023, 281: 109142. doi: 10.1016/j.engfracmech.2023.109142
    [12] CUI Y J, WANG B L, WANG K F, et al. An analytical model to evaluate influence of negative Poisson's ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator[J]. International Journal of Solids and Structures, 2022, 258: 112000. doi: 10.1016/j.ijsolstr.2022.112000
    [13] SELVAN K V, HASAN M N, ALI S M, et al. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years[J]. Journal of Electronic Materials, 2019, 48: 745-777. doi: 10.1007/s11664-018-06838-4
    [14] WEI W, LI J W, ZHANG H T, et al. Macrostructural influence on the thermoelectric properties of SiC ceramics[J]. Scripta Materialia, 2007, 57(12): 1081-1084. doi: 10.1016/j.scriptamat.2007.08.036
    [15] WANG N, HE H, LI X, et al. Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition[J]. Journal of the Ceramic Society of Japan, 2010, 118: 1098-1101.
    [16] CUI Y J, WANG K F, WANG B L, et al. A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties[J]. Composite Structures, 2019, 229: 111484. doi: 10.1016/j.compstruct.2019.111484
    [17] REDDY E S, NOUDEM J G, GOUPIL C. Open porous foam oxide thermoelectric elements for hot gases and liquid environments[J]. Energy Conversion and Management, 2007, 48(4): 1251-1254. doi: 10.1016/j.enconman.2006.09.025
    [18] NOUDEM J G, LEMONNIER S, PREVEL M, et al. Thermoelectric ceramics for generators[J]. Journal of the European Ceramic Society, 2008, 28(1): 41-48. doi: 10.1016/j.jeurceramsoc.2007.05.012
    [19] NITHYANANDAM K, MAHAJAN R L. Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery[J]. International Journal of Heat and Mass Transfer, 2018, 122: 877-883. doi: 10.1016/j.ijheatmasstransfer.2018.02.029
    [20] YILBAS B S, AKHTAR S S, SAHIN A Z. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations[J]. Energy, 2016, 114: 52-63. doi: 10.1016/j.energy.2016.07.168
    [21] SHITTU S, LI G Q, ZHAO X D, et al. High performance and thermal stress analysis of a segmented annular thermoelectric generator[J]. Energy Conversion and Management, 2019, 184: 180-193. doi: 10.1016/j.enconman.2019.01.064
    [22] 朱明明, 李联和. 含正三角形孔口热电材料的断裂力学分析[J]. 应用数学和力学, 2021, 42(6): 656-664. doi: 10.21656/1000-0887.410232

    ZHU Mingming, LI Lianhe. Fracture mechanics analysis of thermoelectric materials with equilateral triangle holes[J]. Applied Mathematics and Mechanics, 2021, 42(6): 656-664. (in Chinese) doi: 10.21656/1000-0887.410232
    [23] 徐华, 曹政, 邹云鹏, 等. 裂纹面分布加载裂尖SIFs分析的广义参数Williams单元[J]. 应用数学和力学, 2022, 43(7): 752-760. doi: 10.21656/1000-0887.420317

    XU Hua, CAO Zheng, ZOU Yunpeng, et al. Williams elements with generalized degrees of freedom for crack tip SIFs analysis under crack surface distributed loading[J]. Applied Mathematics and Mechanics, 2022, 43(7): 752-760. (in Chinese) doi: 10.21656/1000-0887.420317
    [24] CUI Y J, WANG B L, LI J E, et al. Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system[J]. Energy Conversion and Management, 2020, 211: 112744. doi: 10.1016/j.enconman.2020.112744
    [25] TADA H, PAUL C, GEORGE R. The Stress Analysis of Cracks Handbook[M]. 3rd ed. ASME Press, 2000.
    [26] 张晓敏, 万凌, 严波, 等. 断裂力学[M]. 北京: 清华大学出版社, 2012: 142-143.

    ZHANG Xiaomin, WAN Ling, YAN Bo, et al. Fracture Mechanics[M]. Beijing: Tsinghua University Press, 2012: 142-143. (in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  134
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-05-24
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回