留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基本流纬向切变下的稳定辐射斜压位涡

刘楠 宋健

刘楠, 宋健. 基本流纬向切变下的稳定辐射斜压位涡[J]. 应用数学和力学, 2024, 45(1): 120-126. doi: 10.21656/1000-0887.440168
引用本文: 刘楠, 宋健. 基本流纬向切变下的稳定辐射斜压位涡[J]. 应用数学和力学, 2024, 45(1): 120-126. doi: 10.21656/1000-0887.440168
LIU Nan, SONG Jian. Stable Radiation Baroclinic Potential Vortices Under Basic Flow Zonal Shear[J]. Applied Mathematics and Mechanics, 2024, 45(1): 120-126. doi: 10.21656/1000-0887.440168
Citation: LIU Nan, SONG Jian. Stable Radiation Baroclinic Potential Vortices Under Basic Flow Zonal Shear[J]. Applied Mathematics and Mechanics, 2024, 45(1): 120-126. doi: 10.21656/1000-0887.440168

基本流纬向切变下的稳定辐射斜压位涡

doi: 10.21656/1000-0887.440168
基金项目: 

国家自然科学基金 42275052

内蒙古自治区高等学校科学研究重点项目 NJZZ23087

内蒙古自治区研究生科研创新项目 JY20220388

详细信息
    作者简介:

    刘楠(2000—), 女, 硕士生(E-mail: liu25151909@163.com)

    通讯作者:

    宋健(1970—), 男, 教授, 博士(通讯作者. E-mail: songjian@imut.edu.cn)

  • 中图分类号: O351;P433

Stable Radiation Baroclinic Potential Vortices Under Basic Flow Zonal Shear

  • 摘要: 在大尺度垂直剪切中,嵌入一类新的、稳定传播的斜压涡旋,它辐射的Rossby波没有衰减.通过考虑Beta平面上的两层模型为基础,利用纬向二次剪切流与稳定辐射斜压流体之间的色散关系变化,进行数值模拟,得出了二次剪切流对稳定辐射斜压位涡(potential vorticity, PV)不稳定性的影响; 同时涡旋产生的Rossby波,引起经向涡旋的传播及其他相干的热流; 对于亚热带海洋向西流,随纬度变化,通过三角函数近似解,给出相应Bessel函数数值解,得到二次剪切流使得上层PV梯度的减少,持续延长了涡旋的寿命.
  • 图  1  a1=0, a2≠0时,ωa2的关系

    Figure  1.  The relationship between ω and a2 for a1=0, a2≠0

    图  2  a2=0, a1≠0时,ωa1的关系

    Figure  2.  The relationship between ω and a1 for a2=0, a1≠0

    图  3  a1≠0时,a1ωa2关系的影响

    Figure  3.  The effect of a1 on the relationship between ω and a2 for a1≠0

    图  4  a2≠0时,a2ωa1关系的影响

    Figure  4.  The effect of a2 on the relationship between ω and a1 for a2≠0

    图  5  ωa1, a2的三维关系

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  5.  The 3D relationships between ω and a1, a2

  • [1] AGUEDIOU H, DADOU L, CHAIGNEAU A, et al. Eddies in the tropical Atlantic ocean and their seasonal variability[J]. Geophysical Research Letters, 2019, 46(21): 12156-12164. doi: 10.1029/2019GL083925
    [2] GALLET B, FERRARI R. The vortex gas scaling regime of baroclinic turbulence[J]. Proceeding of the National Academy of Sciences, 2020, 117(9): 4491-4497. doi: 10.1073/pnas.1916272117
    [3] ARBIC B K, FLIERL G R. Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence[J]. Physics of Fluids, 2003, 15(8): 2177-2189. doi: 10.1063/1.1582183
    [4] 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese)) doi: 10.21656/1000-0887.400151
    [5] FLIERL G R. Rossby wave radiation from a strongly nonlinear warm eddy[J]. Journal of Physical Oceanography, 1984, 14(1): 47-58. doi: 10.1175/1520-0485(1984)014<0047:RWRFAS>2.0.CO;2
    [6] NYCANDER J, SUTYRIN G G. Steadily translating anticyclones on the beta plane[J]. Dynamics of Atmospheres and Oceans, 1992, 16(6): 473-498. doi: 10.1016/0377-0265(92)90002-B
    [7] PAKYARI A, NYCANDER J. Steady two-layer vortices on the beta-plane[J]. Dynamics of Atmospheres and Oceans, 1996, 25(2): 67-86. doi: 10.1016/S0377-0265(96)00475-7
    [8] 穆穆. 两个大气动力学模式整体强解的存在唯一性[J]. 应用数学和力学, 1986, 7(10): 907-912. http://www.applmathmech.cn/article/id/3955

    MU Mu. Existence and uniqueness of global strong solutions of two models in atmospheric dynamics[J]. Applied Mathematics and Mechanics, 1986, 7(10): 907-912. (in Chinese)) http://www.applmathmech.cn/article/id/3955
    [9] SUTYRIN G G, DEWAR W K. Almost symmetric solitary eddies in a two-layer ocean[J]. Journal of Fluid Mechanics, 1992, 238: 633-656. doi: 10.1017/S0022112092001848
    [10] HELD I M, LARICHEV V D. A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane[J]. Journal of the Atmospheric Sciences, 1996, 53(7): 946-952. doi: 10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
    [11] SUTYRIN G G, RADKO T. Why the most long-lived oceanic vortices are found in the subtropical westward flows[J]. Ocean Model, 2021, 161: 101782. doi: 10.1016/j.ocemod.2021.101782
    [12] SUTYRIN G G, HESTHAVEN J S, LYNOV J P, et al. Dynamical properties of vortical structures on the beta-plane[J]. Journal of the Fluid Mechanics, 1994, 268: 103-131. doi: 10.1017/S002211209400128X
    [13] DILMAHAMOD A F, AGUIAR-GONZALEZ B, PENVEN P, et al. SIDDIES corridor: a major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5406-5425. doi: 10.1029/2018JC013828
    [14] SUTYRIN G G. How baroclinic vortices intensify resulting from erosion of their cores and/or changing environment[J]. Ocean Modell, 2020, 156(3): 101711.
    [15] 陈利国, 杨联贵. 推广的β平面近似下带有外源和耗散强迫的非线性Boussinesq方程及其孤立波解[J]. 应用数学和力学, 2020, 41(1): 98-106. doi: 10.21656/1000-0887.400067

    CHEN Liguo, YANG Liangui. A nonlinear Boussinesq equation with external source and dissipation forcing under generalized β plane approximation and its solitary wave solutions[J]. Applied Mathematics and Mechanics, 2020, 41(1): 98-106. (in Chinese)) doi: 10.21656/1000-0887.400067
    [16] YANG L, DA C, SONG J, et al. Rossby waves with linear topography in barotropic fluids[J]. Chinese Journal of Oceanology and Limnology, 2008, 26: 334-338. doi: 10.1007/s00343-008-0334-7
    [17] LARICHEV V D, REZNIK G M. Two-dimensional Rossby soliton: an exact solution[J]. Doklady Akademii Nauk SSSR, 1976, 231(5): 1077-1079.
    [18] TULLOCH R, MARSHALL J, HILL C, et al. Scales, growth rates and spectral fluxes of baroclinic instability in the ocean[J]. Journal of Physical Oceanography, 2011, 41(6): 1057-1076. doi: 10.1175/2011JPO4404.1
    [19] GUO C Z, JIAN S. Baroclinic instability of a time-dependent zonal shear flow[J]. Atmosphere, 2022, 13(7): 1058. doi: 10.3390/atmos13071058
    [20] PEDLOSKY J. Geophysical Fluid Dynamics[M]. Springer-Verlag, 1987: 710.
    [21] VALLIS G K. Atmospheric and Oceanic Fluid Dynamics[M]. Cambridge: Cambridge University Press, 2006: 745.
    [22] 陈利国. 大气和海洋中两类非线性孤立波模型研究[D]. 呼和浩特: 内蒙古大学, 2020.

    CHEN Liguo. Study on two kinds of nonlinear solitary wave models in atmosphere and ocean[D]. Hohhot: Inner Mongolia University, 2020. (in Chinese))
    [23] KURCZYN J, BEIER E, LAVÍN M, et al. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical-subtropical transition zone[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5931-5950. doi: 10.1002/2013JC20437
    [24] CHEN G, HAN G, YANG X. On the intrinsic shape of oceanic eddies derived from satellite altimetry[J]. Remote Sensing of Environment, 2019, 228: 75-89. doi: 10.1016/j.rse.2019.04.011
    [25] KIZNER Z, BERSON D, REZNIK G, et al. The theory of the beta-plane baroclinic topographic modons[J]. Geophysical & Astrophysical Fluid Dynamics, 2003, 97(3): 175-211.
  • 加载中
图(5)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  85
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-10-02
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回