[1] |
AGUEDIOU H, DADOU L, CHAIGNEAU A, et al. Eddies in the tropical Atlantic ocean and their seasonal variability[J]. Geophysical Research Letters, 2019, 46(21): 12156-12164. doi: 10.1029/2019GL083925
|
[2] |
GALLET B, FERRARI R. The vortex gas scaling regime of baroclinic turbulence[J]. Proceeding of the National Academy of Sciences, 2020, 117(9): 4491-4497. doi: 10.1073/pnas.1916272117
|
[3] |
ARBIC B K, FLIERL G R. Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence[J]. Physics of Fluids, 2003, 15(8): 2177-2189. doi: 10.1063/1.1582183
|
[4] |
王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese)) doi: 10.21656/1000-0887.400151
|
[5] |
FLIERL G R. Rossby wave radiation from a strongly nonlinear warm eddy[J]. Journal of Physical Oceanography, 1984, 14(1): 47-58. doi: 10.1175/1520-0485(1984)014<0047:RWRFAS>2.0.CO;2
|
[6] |
NYCANDER J, SUTYRIN G G. Steadily translating anticyclones on the beta plane[J]. Dynamics of Atmospheres and Oceans, 1992, 16(6): 473-498. doi: 10.1016/0377-0265(92)90002-B
|
[7] |
PAKYARI A, NYCANDER J. Steady two-layer vortices on the beta-plane[J]. Dynamics of Atmospheres and Oceans, 1996, 25(2): 67-86. doi: 10.1016/S0377-0265(96)00475-7
|
[8] |
穆穆. 两个大气动力学模式整体强解的存在唯一性[J]. 应用数学和力学, 1986, 7(10): 907-912. http://www.applmathmech.cn/article/id/3955MU Mu. Existence and uniqueness of global strong solutions of two models in atmospheric dynamics[J]. Applied Mathematics and Mechanics, 1986, 7(10): 907-912. (in Chinese)) http://www.applmathmech.cn/article/id/3955
|
[9] |
SUTYRIN G G, DEWAR W K. Almost symmetric solitary eddies in a two-layer ocean[J]. Journal of Fluid Mechanics, 1992, 238: 633-656. doi: 10.1017/S0022112092001848
|
[10] |
HELD I M, LARICHEV V D. A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane[J]. Journal of the Atmospheric Sciences, 1996, 53(7): 946-952. doi: 10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
|
[11] |
SUTYRIN G G, RADKO T. Why the most long-lived oceanic vortices are found in the subtropical westward flows[J]. Ocean Model, 2021, 161: 101782. doi: 10.1016/j.ocemod.2021.101782
|
[12] |
SUTYRIN G G, HESTHAVEN J S, LYNOV J P, et al. Dynamical properties of vortical structures on the beta-plane[J]. Journal of the Fluid Mechanics, 1994, 268: 103-131. doi: 10.1017/S002211209400128X
|
[13] |
DILMAHAMOD A F, AGUIAR-GONZALEZ B, PENVEN P, et al. SIDDIES corridor: a major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5406-5425. doi: 10.1029/2018JC013828
|
[14] |
SUTYRIN G G. How baroclinic vortices intensify resulting from erosion of their cores and/or changing environment[J]. Ocean Modell, 2020, 156(3): 101711.
|
[15] |
陈利国, 杨联贵. 推广的β平面近似下带有外源和耗散强迫的非线性Boussinesq方程及其孤立波解[J]. 应用数学和力学, 2020, 41(1): 98-106. doi: 10.21656/1000-0887.400067CHEN Liguo, YANG Liangui. A nonlinear Boussinesq equation with external source and dissipation forcing under generalized β plane approximation and its solitary wave solutions[J]. Applied Mathematics and Mechanics, 2020, 41(1): 98-106. (in Chinese)) doi: 10.21656/1000-0887.400067
|
[16] |
YANG L, DA C, SONG J, et al. Rossby waves with linear topography in barotropic fluids[J]. Chinese Journal of Oceanology and Limnology, 2008, 26: 334-338. doi: 10.1007/s00343-008-0334-7
|
[17] |
LARICHEV V D, REZNIK G M. Two-dimensional Rossby soliton: an exact solution[J]. Doklady Akademii Nauk SSSR, 1976, 231(5): 1077-1079.
|
[18] |
TULLOCH R, MARSHALL J, HILL C, et al. Scales, growth rates and spectral fluxes of baroclinic instability in the ocean[J]. Journal of Physical Oceanography, 2011, 41(6): 1057-1076. doi: 10.1175/2011JPO4404.1
|
[19] |
GUO C Z, JIAN S. Baroclinic instability of a time-dependent zonal shear flow[J]. Atmosphere, 2022, 13(7): 1058. doi: 10.3390/atmos13071058
|
[20] |
PEDLOSKY J. Geophysical Fluid Dynamics[M]. Springer-Verlag, 1987: 710.
|
[21] |
VALLIS G K. Atmospheric and Oceanic Fluid Dynamics[M]. Cambridge: Cambridge University Press, 2006: 745.
|
[22] |
陈利国. 大气和海洋中两类非线性孤立波模型研究[D]. 呼和浩特: 内蒙古大学, 2020.CHEN Liguo. Study on two kinds of nonlinear solitary wave models in atmosphere and ocean[D]. Hohhot: Inner Mongolia University, 2020. (in Chinese))
|
[23] |
KURCZYN J, BEIER E, LAVÍN M, et al. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical-subtropical transition zone[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5931-5950. doi: 10.1002/2013JC20437
|
[24] |
CHEN G, HAN G, YANG X. On the intrinsic shape of oceanic eddies derived from satellite altimetry[J]. Remote Sensing of Environment, 2019, 228: 75-89. doi: 10.1016/j.rse.2019.04.011
|
[25] |
KIZNER Z, BERSON D, REZNIK G, et al. The theory of the beta-plane baroclinic topographic modons[J]. Geophysical & Astrophysical Fluid Dynamics, 2003, 97(3): 175-211.
|