留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机广义拟变分不等式的迭代解法及应用

王雁南 曾嘉钦 黄南京

王雁南, 曾嘉钦, 黄南京. 随机广义拟变分不等式的迭代解法及应用[J]. 应用数学和力学, 2023, 44(11): 1378-1388. doi: 10.21656/1000-0887.440199
引用本文: 王雁南, 曾嘉钦, 黄南京. 随机广义拟变分不等式的迭代解法及应用[J]. 应用数学和力学, 2023, 44(11): 1378-1388. doi: 10.21656/1000-0887.440199
WANG Yannan, ZENG Jiaqin, HUANG Nanjing. Iterative Methods for Random Generalized Quasi Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1378-1388. doi: 10.21656/1000-0887.440199
Citation: WANG Yannan, ZENG Jiaqin, HUANG Nanjing. Iterative Methods for Random Generalized Quasi Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1378-1388. doi: 10.21656/1000-0887.440199

随机广义拟变分不等式的迭代解法及应用

doi: 10.21656/1000-0887.440199
(我刊编委黄南京来稿)
基金项目: 

国家自然科学基金项目 12171339

国家重点研发项目 2020YFC0832404

详细信息
    作者简介:

    王雁南(1998—),男,硕士生(E-mail: 1255819341@qq.com)

    曾嘉钦(1999—),男,硕士生(E-mail: 185459413@qq.com)

    通讯作者:

    黄南京(1962—),男,教授,博士生导师(通讯作者. E-mail: nanjinghuang@hotmail.com; njhuang@scu.edu.cn)

  • 中图分类号: O177.91;O221.5

Iterative Methods for Random Generalized Quasi Variational Inequalities With Applications

(Contributed by HUANG Nanjing, M. AMM Ediorial Board)
  • 摘要: 为了获得Hilbert空间中一类随机广义拟变分不等式的迭代解法, 证明了点到由具闭(凸)值的随机集值映射所刻画的变约束集上的投影算子的可测性.利用该可测性结果和可测选择定理, 构造了求解随机广义拟变分不等式的随机迭代算法.在单调性及Lipschitz连续性条件下, 获得了由算法生成的随机序列的收敛性.作为应用, 给出了随机广义Nash博弈和随机Walrasian均衡问题的一些刻画性结果.
    1)  (我刊编委黄南京来稿)
  • [1] MOSCO U. Implicit variational problems and quasi-variational inequalities[J]. Nonlinear Operators and the Calculus of Variations, 1976, 543: 83-156.
    [2] CHAN D, PANG J S. The generalized quasi-variational inequality problem[J]. Mathematics of Operations Research, 1982, 7(2): 159-318. doi: 10.1287/moor.7.2.159
    [3] BAIOCCHI C, CAPELO A. Variational and Quasivariational Inequalities, Application to Free Boundary Problems[M]. New York: Wiley, 1984.
    [4] HARKERP T. Generalized Nash games and quasi-variational inequalities[J]. European Journal of Operational Research, 1991, 54(1): 81-94. doi: 10.1016/0377-2217(91)90325-P
    [5] GIANNESSI F, MAUGERI A. Variational Inequalities and Network Equilibrium Problems[M]. Boston: Springer, 1995.
    [6] KONNOV I V, VOLOTSKAYA E O. Mixed variational inequalities and economic equilibrium problems[J]. Journal of Applied Mathematics, 2002, 2(6): 289-314. doi: 10.1155/S1110757X02106012
    [7] FACCHINEI F, FISCHER A, PICCIALLI V. On generalized Nash games and variational inequalities[J]. Operations Research Letters, 2007, 35(2): 159-164. doi: 10.1016/j.orl.2006.03.004
    [8] 张石生. 变分不等式及其相关问题[M]. 重庆: 重庆出版社, 2008.

    ZHANG Shisheng. Variational Inequality and Its Related Problems[M]. Chongqing: Chongqing Publishing Group, 2008. (in Chinese)
    [9] GWINNER J, RACITI F. Some equilibrium problems under uncertainty and random variational inequalities[J]. Annals of Operations Research, 2012, 200(1): 299-319. doi: 10.1007/s10479-012-1109-2
    [10] LI X, LI X S, HUANG N J. A generalized f-projection algorithm for inverse mixed variational inequalities[J]. Optimization Letters, 2014, 8: 1063-1076. doi: 10.1007/s11590-013-0635-4
    [11] NAGURNEY A. Network Economics: a Variational Inequality Approach[M]. Springer Dordrecht, 1999.
    [12] PANG J S, FUKUSHIMA M. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[J]. Computational Management Science, 2005, 2: 21-56. doi: 10.1007/s10287-004-0010-0
    [13] 王霄婷, 龙宪军, 彭再云. 求解非单调变分不等式的一种二次投影算法[J]. 应用数学和力学, 2022, 43(8): 927-934. doi: 10.21656/1000-0887.420414

    WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A double projection algorithm for solving non-monotone variational inequalities[J]. Applied Mathematics and Mechanics, 2022, 43(8): 927-934. (in Chinese) doi: 10.21656/1000-0887.420414
    [14] 杨军. 非单调变分不等式黄金分割算法研究[J]. 应用数学和力学, 2021, 42(7): 764-770. doi: 10.21656/1000-0887.410359

    YANG Jun. A golden ratio algorithm for solving nonmonotone variational inequalities[J]. Applied Mathematics and Mechanics, 2021, 42(7): 764-770. (in Chinese) doi: 10.21656/1000-0887.410359
    [15] 刘爽, 莫定勇, 周志昂. Riemann流形上ρ-(η, d)-B不变凸的向量变分不等式及向量优化问题[J]. 应用数学和力学, 2020, 41(4): 458-466. doi: 10.21656/1000-0887.400227

    LIU Shuang, MO Dingyong, ZHOU Zhiang. Vector variational-like inequalities and vector optimization problems involving ρ-(η, d)-B invexity on Riemannian manifolds[J]. Applied Mathematics and Mechanics, 2020, 41(4): 458-466. (in Chinese) doi: 10.21656/1000-0887.400227
    [16] 王梓坤. 随机泛函分析引论[J]. 数学进展, 1962, 5(1): 45-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ196201001.htm

    WANG Zikun. Introduction to random functional analysis[J]. Advances in Mathematics, 1962, 5(1): 45-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJZ196201001.htm
    [17] 张石生, 朱元国. 关于一类随机变分不等式和随机拟变分不等式问题[J]. 数学研究与评论, 1989, 9(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ198903014.htm

    ZHANG Shisheng, ZHU Yuanguo. On a class of random variational inequalities and random quasi-variational inequalities[J]. Journal of Mathematical Research and Exposition, 1989, 9(3): 385-393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ198903014.htm
    [18] TAN N X. Random quasi-variational inequality[J]. Mathematische Nachrichten, 1986, 125: 319-328. doi: 10.1002/mana.19861250124
    [19] 黄南京. 随机广义集值拟补问题[D]. 硕士学位论文. 成都: 四川大学, 1990.

    HUANG Nanjing. Random general set-valued quasi complementarity problems[D]. Mater Thesis. Chengdu: Sichuan University, 1990. (in Chinese)
    [20] 黄南京. 随机广义集值强非线性拟变分不等式[J]. 四川大学学报(自然科学版), 1994, 31(4): 420-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX404.001.htm

    HUANG Nanjing. Random general set-valued strongly nonlinear quasivariational inequalities[J]. Journal of Sichuan University (Natural Science Edition), 1994, 31(4): 420-425. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX404.001.htm
    [21] HUANG N J, CHO Y J. Random completely generalized set-valued implicit quasi-variational inequalities[J]. Positivity, 1999, 3: 201-213.
    [22] DANIELE P, GIUFFRE· S. Random variational inequalities and the random traffic equilibrium problem[J]. Journal of Optimization Theory and Applications, 2014, 167(1): 363-381.
    [23] GWINNER J, JADAMBA B, KHAN A A, et al. Uncertainty Quantification in Variational Inequalities[M]. New York : Chapman and Hall/CRC, 2022.
    [24] HIMMELBERG C J. Measurable relations[J]. Fundamenta Mathematicae, 1975, 87: 53-72.
    [25] CASTAING C, VALADIER M. Convex Analysis and Measurable Multifunctions[M]. Berlin: Springer, 1977.
    [26] 张文修, 李寿梅, 汪振鹏, 等. 集值随机过程引论[M]. 北京: 科学出版社, 2007.

    ZHANG Wenxiu, LI Shoumei, WANG Zhenpeng, et al. Introduction to Set-Valued Random Processes[M]. Beijing: Science Press, 2007. (in Chinese)
    [27] 周叔子. 椭圆变分不等式的扰动[J]. 中国科学(A辑), 1991, 21(3): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK199103001.htm

    ZHOU Shuzi. Perturbation of elliptic variational inequalities[J]. Science China A, 1991, 21(3): 237-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK199103001.htm
    [28] 张讲社, 徐宗本. 拟变分不等式的迭代解法[J]. 工程数学学报, 1989, 6(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSX198901005.htm

    ZHANG Jiangshe, XU Zongben. Iterative methods for quasivariational inequalities[J]. Journal of Engineering Mathematics, 1989, 6(1): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSX198901005.htm
    [29] GÓRNIEWICZ L. Topological Fixed Point Theory of Multivalued Mappings[M]. Springer Dordrecht, 1999.
    [30] HE X L. On ϕ-strongly accretive mappings and some set-valued variational problems[J]. Journal of Mathematical Analysis and Applications, 2003, 277(2): 504-511.
    [31] ZHANG Y J, GOU Z, HUANG N J, et al. A class of stochastic differential variational inequalities with some applications[J]. Journal of Nonlinear and Convex Analysis, 2023, 24: 75-100.
    [32] ZHANG Y J, CHEN T, HUANG N J, et al. Penalty method for solving a class of stochastic differential variational inequalities with an application[J]. Nonlinear Analysis: Real World Applications, 2023, 73: 103889.
  • 加载中
计量
  • 文章访问数:  384
  • HTML全文浏览量:  149
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-07-21
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回