| [1] | CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010,  348(7/8): 379-383. | 
		
				| [2] | COLTON D L, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 1998. | 
		
				| [3] | CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010,  42(1): 237-255. doi:  10.1137/090769338 | 
		
				| [4] | SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012,  44(1): 341-354. doi:  10.1137/110836420 | 
		
				| [5] | COLTON D, PAIVARINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007,  1(1): 13-28. doi:  10.3934/ipi.2007.1.13 | 
		
				| [6] | COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems, 2013,  29(10): 104008. doi:  10.1088/0266-5611/29/10/104008 | 
		
				| [7] | ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems, 2013,  29(10): 104001. doi:  10.1088/0266-5611/29/10/104001 | 
		
				| [8] | NGUYEN H M, NGUYEN Q H. The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[J]. Journal of Functional Analysis, 2021,  281(8): 109146. doi:  10.1016/j.jfa.2021.109146 | 
		
				| [9] | 陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018,  39(4): 470-484. doi:  10.21656/1000-0887.380202CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics, 2018,  39(4): 470-484. (in Chinese) doi:  10.21656/1000-0887.380202 | 
		
				| [10] | 戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018,  39(7): 833-840. doi:  10.21656/1000-0887.380327DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018,  39(7): 833-840. (in Chinese) doi:  10.21656/1000-0887.380327 | 
		
				| [11] | PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008,  40(2): 738-753. doi:  10.1137/070697525 | 
		
				| [12] | CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009,  88(4): 475-493. doi:  10.1080/00036810802713966 | 
		
				| [13] | SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012,  44(1): 341-354. doi:  10.1137/110836420 | 
		
				| [14] | CAKONI F, COLTON D, HADDAR H. The interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2010,  42(1): 145-162. doi:  10.1137/090754637 | 
		
				| [15] | COSSONNIÈRE A, HADDAR H. The electromagnetic interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2011,  43(4): 1698-1715. doi:  10.1137/100813890 | 
		
				| [16] | COLTON D, LEUNG Y J, MENG S. Distribution of complex transmission eigenvalues for spherically stratified media[J]. Inverse Problems, 2015,  31(3): 035006. doi:  10.1088/0266-5611/31/3/035006 | 
		
				| [17] | COLTON D, LEUNG Y J. The existence of complex transmission eigenvalues for spherically stratified media[J]. Applicable Analysis, 2017,  96(1): 39-47. doi:  10.1080/00036811.2016.1210788 | 
		
				| [18] | AMBROSE D M, CAKONI F, MOSKOW S. A perturbation problem for transmission eigenvalues[J]. Research in the Mathematical Sciences, 2022,  9(1): 1-16. doi:  10.1007/s40687-021-00298-9 | 
		
				| [19] | CAKONI F, COLTON D, HADDAR H.  Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016. | 
		
				| [20] | RYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991,  22(6): 1755-1762. doi:  10.1137/0522109 | 
		
				| [21] | HURWICZ L, RICHTER M K. Implicit functions and diffeomorphisms without C1[J]. Advances in Mathematical Economics, 2003,  5: 65-96. | 
		
				| [22] | RELLICH F. Perturbation Theory of Eigenvalue Problems[M]. New York: Gordon and Breach Science Publishers, 1969. | 
		
				| [23] | KATO T. Perturbation Theory for Linear Operators[M]. Berlin: Springer, 2013. |