[1] |
CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8): 379-383.
|
[2] |
COLTON D L, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 1998.
|
[3] |
CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 237-255. doi: 10.1137/090769338
|
[4] |
SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
|
[5] |
COLTON D, PAIVARINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1): 13-28. doi: 10.3934/ipi.2007.1.13
|
[6] |
COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems, 2013, 29(10): 104008. doi: 10.1088/0266-5611/29/10/104008
|
[7] |
ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems, 2013, 29(10): 104001. doi: 10.1088/0266-5611/29/10/104001
|
[8] |
NGUYEN H M, NGUYEN Q H. The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[J]. Journal of Functional Analysis, 2021, 281(8): 109146. doi: 10.1016/j.jfa.2021.109146
|
[9] |
陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018, 39(4): 470-484. doi: 10.21656/1000-0887.380202CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics, 2018, 39(4): 470-484. (in Chinese) doi: 10.21656/1000-0887.380202
|
[10] |
戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. (in Chinese) doi: 10.21656/1000-0887.380327
|
[11] |
PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2): 738-753. doi: 10.1137/070697525
|
[12] |
CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4): 475-493. doi: 10.1080/00036810802713966
|
[13] |
SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
|
[14] |
CAKONI F, COLTON D, HADDAR H. The interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 145-162. doi: 10.1137/090754637
|
[15] |
COSSONNIÈRE A, HADDAR H. The electromagnetic interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2011, 43(4): 1698-1715. doi: 10.1137/100813890
|
[16] |
COLTON D, LEUNG Y J, MENG S. Distribution of complex transmission eigenvalues for spherically stratified media[J]. Inverse Problems, 2015, 31(3): 035006. doi: 10.1088/0266-5611/31/3/035006
|
[17] |
COLTON D, LEUNG Y J. The existence of complex transmission eigenvalues for spherically stratified media[J]. Applicable Analysis, 2017, 96(1): 39-47. doi: 10.1080/00036811.2016.1210788
|
[18] |
AMBROSE D M, CAKONI F, MOSKOW S. A perturbation problem for transmission eigenvalues[J]. Research in the Mathematical Sciences, 2022, 9(1): 1-16. doi: 10.1007/s40687-021-00298-9
|
[19] |
CAKONI F, COLTON D, HADDAR H. Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
|
[20] |
RYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6): 1755-1762. doi: 10.1137/0522109
|
[21] |
HURWICZ L, RICHTER M K. Implicit functions and diffeomorphisms without C1[J]. Advances in Mathematical Economics, 2003, 5: 65-96.
|
[22] |
RELLICH F. Perturbation Theory of Eigenvalue Problems[M]. New York: Gordon and Breach Science Publishers, 1969.
|
[23] |
KATO T. Perturbation Theory for Linear Operators[M]. Berlin: Springer, 2013.
|