留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆叠卫星的分离与重构动力学研究

孙加亮 张晓亮 金栋平

孙加亮, 张晓亮, 金栋平. 堆叠卫星的分离与重构动力学研究[J]. 应用数学和力学, 2024, 45(1): 1-11. doi: 10.21656/1000-0887.440222
引用本文: 孙加亮, 张晓亮, 金栋平. 堆叠卫星的分离与重构动力学研究[J]. 应用数学和力学, 2024, 45(1): 1-11. doi: 10.21656/1000-0887.440222
SUN Jialiang, ZHANG Xiaoliang, JIN Dongping. Separation and Reconfiguration Dynamics of Stacked Satellites[J]. Applied Mathematics and Mechanics, 2024, 45(1): 1-11. doi: 10.21656/1000-0887.440222
Citation: SUN Jialiang, ZHANG Xiaoliang, JIN Dongping. Separation and Reconfiguration Dynamics of Stacked Satellites[J]. Applied Mathematics and Mechanics, 2024, 45(1): 1-11. doi: 10.21656/1000-0887.440222

堆叠卫星的分离与重构动力学研究

doi: 10.21656/1000-0887.440222
(我刊编委金栋平、青年编委孙加亮来稿)
基金项目: 

国家自然科学基金 12002153

国家自然科学基金 12232011

国家自然科学基金 12172181

江苏省自然科学基金 BK20200434

中央高校基本科研业务费 NS2023002

详细信息
    通讯作者:

    孙加亮(1992—),男,副教授,博士,硕士生导师(通讯作者. E-mail: jindp@nuaa.edu.cn)

  • 中图分类号: O3

Separation and Reconfiguration Dynamics of Stacked Satellites

(Contributed by JIN Dongping, M.AMM Editorial Board & SUN Jialiang, M.AMM Youth Editorial Board)
  • 摘要: 堆叠卫星入轨后分离再重构是构建大型空间结构的有效手段之一. 使用自然坐标法建立堆叠卫星系统的动力学方程,具有方便处理卫星组装中固定约束的优点. 设置合适的堆叠卫星分离策略和组装策略,采用自旋分离实现了卫星以堆叠状态入轨后的无碰撞分离,使用PD控制结合势函数方法实现了卫星的逐步组装. 另外,采用优化算法计算了卫星之间的最小距离,用以精细确定排斥势的大小. 基于以上方法,仿真实现了卫星由堆叠状态分离到分段组装的全部过程,证明了所设计的分离和组装策略是有效的.
    1)  (我刊编委金栋平、青年编委孙加亮来稿)
  • 图  1  堆叠卫星系统的描述坐标系

    Figure  1.  Three coordinate systems for a stacked satellite system

    图  2  卫星k的自然坐标

    Figure  2.  The natural coordinate formulation for the kth satellite

    图  3  卫星之间的最小距离与卫星中心的距离

    Figure  3.  The minimum distance between satellites and the center-line spacing of the satellites

    图  4  堆叠卫星初始构型与目标组装构型

    Figure  4.  The initial and final configurations of the stacked satellites

    图  5  卫星分离组装策略

    Figure  5.  The separation and assembly strategy of stacked satellites

    图  6  分离阶段卫星构型

    Figure  6.  Satellite configurations in the separation progress

    图  7  分离阶段22号卫星与其相邻卫星之间的距离

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  The minimum distances between the №.22 satellite and its neighbours

    图  8  组装阶段卫星构型

    Figure  8.  Satellite configurations in the assembly progress

    图  9  1~8号卫星的位移

    Figure  9.  The displacements of the №.1~8 satellites

    图  10  1~8号卫星的姿态

    Figure  10.  The attitudes of the №.1~8 satellites

    图  11  1~8号卫星的速度

    Figure  11.  The velocities of the №.1~8 satellites

    图  12  1~8号卫星上的主动力

    Figure  12.  The forces of the №.1~8 satellites

    表  1  控制参数的取值

    Table  1.   Control parameters

    parameter value
    phase 2 & 3 kprkpt 1
    phase 2 & 3 kdr, kdt 5
    phase 4 kpr, kpt 8
    phase 4 kdr, kdt 40
    d/m 0.07
    δ/m 0.25
    下载: 导出CSV
  • [1] 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 523913.

    WANG Mingming, LUO Jianjun, YUAN Jianping, et al. In-orbit assembly technology review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523913. (in Chinese)
    [2] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4): 805-811. doi: 10.3321/j.issn:1000-1328.2007.04.005

    CUI Naigang, WANG Ping, GUO Jifeng, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4): 805-811. (in Chinese) doi: 10.3321/j.issn:1000-1328.2007.04.005
    [3] PIRAT C, RIBES-PLEGUEZUELO P, KELLER F, et al. Toward the autonomous assembly of large telescopes using cubesat rendezvous and docking[J]. Journal of Spacecraft and Rockets, 2022, 59(2): 375-388. doi: 10.2514/1.A34945
    [4] SAUNDERS C, LOBB D, SWEETING M, et al. Building large telescopes in orbit using small satellites[J]. Acta Astronautica, 2017, 141: 183-195. doi: 10.1016/j.actaastro.2017.09.022
    [5] 陈金宝, 霍伟航, 陈传志, 等. 堆叠式多星分离动力学研究[J]. 机械制造与自动化, 2023, 52(2): 7-10.

    CHEN Jinbao, HUO Weihang, CHEN Chuanzhi, et al. Dynamic analysis of stacked multi-satellite separation[J]. Machine Building and Automation, 2023, 52(2): 7-10. (in Chinese)
    [6] 卢丽颖, 孟宪红, 邢依琳. 卫星空间分离动力学研究[J]. 动力学与控制学报, 2014, 12(2): 165-169.

    LU Liying, MENG Xianhong, XING Yilin. Dynamic study of satellite space separation[J]. Journal of Dynamics and Control, 2014, 12(2): 165-169. (in Chinese)
    [7] 罗操群, 孙加亮, 文浩, 等. 多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513.

    LUO Caoqun, SUN Jialiang, WEN Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. (in Chinese)
    [8] SUN J, TAN S, WEN H, et al. Contact-free release dynamics of tens of stacked satellites with multiaxial rotations[J]. Advances in Space Research, 2023, 71(1): 492-506. doi: 10.1016/j.asr.2022.09.001
    [9] LU S, ZHANG Y, LI X, et al. Decentralized closed-loop optimization for 6-DOF self-assembly satellites[J]. Acta Astronautica, 2021, 189: 593-605. doi: 10.1016/j.actaastro.2021.09.011
    [10] MORGAN D, CHUNG S, HADAEGH F. Model predictive control of swarms of spacecraft using sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1725-1740. doi: 10.2514/1.G000218
    [11] MORGAN D, SUBRAMANIAN G P, CHUNG S, et al. Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming[J]. The International Journal of Robotics Research, 2016, 35(10): 1261-1285. doi: 10.1177/0278364916632065
    [12] FOUST R C, LUPU S E, NAKKA Y K, et al. Autonomous in-orbit satellite assembly from a modular heterogeneous swarm[J]. Acta Astronautica, 2020, 169: 191-205. doi: 10.1016/j.actaastro.2020.01.006
    [13] 袁长清, 李俊峰, 王天舒, 等. 航天器编队飞行多目标姿态快速跟踪鲁棒控制[J]. 应用数学和力学, 2008, 29(2): 169-180. doi: 10.3879/j.issn.1000-0887.2008.02.006

    YUAN Changqing, LI Junfeng, WANG Tianshu, et al. Robust attitude control for rapid multi-target tracking in spacecraft formation flying[J]. Applied Mathematics and Mechanics, 2008, 29(2): 169-180. (in Chinese) doi: 10.3879/j.issn.1000-0887.2008.02.006
    [14] SHABANA A A. Dynamics of Multibody Systems[M]. Chicago: University of Illinois, 2013.
    [15] LI K, TIAN Q, SHI J, et al. Assembly dynamics of a large space modular satellite antenna[J]. Mechanism and Machine Theory, 2019, 142: 103601. doi: 10.1016/j.mechmachtheory.2019.103601
    [16] SUN J, CHEN E, CHEN T, et al. Spin dynamics of a long tethered sub-satellite system in geostationary orbit[J]. Acta Astronautica, 2022, 195: 12-26. doi: 10.1016/j.actaastro.2022.02.026
    [17] 王启生, 蒋建平, 李庆军, 等. 空间机器人组装超大型结构的动力学分析[J]. 应用数学和力学, 2022, 43(8): 835-845. doi: 10.21656/1000-0887.420244

    WANG Qisheng, JIANG Jianping, LI Qingjun, et al. Dynamic analyses of the assembling process of ultra-large structures with space robots[J]. Applied Mathematics and Mechanics, 2022, 43(8): 835-845. (in Chinese) doi: 10.21656/1000-0887.420244
    [18] JAVIER G J. Twenty-five years of natural coordinates[J]. Multibody System Dynamics, 2007, 18(1): 15-33. doi: 10.1007/s11044-007-9068-0
    [19] LI Q, YUAN J, WANG H. Sliding mode control for autonomous spacecraft rendezvous with collision avoidance[J]. Acta Astronautica, 2018, 151: 743-751. doi: 10.1016/j.actaastro.2018.07.006
    [20] 刘铖. 基于绝对坐标描述的柔性空间结构展开动力学研究[D]. 北京: 北京理工大学, 2013.

    LIU Cheng. Deployment dynamics of flexible space structures described by absolute-coordinate-based method[D]. Beijing: Beijing Institute of Technology, 2013. (in Chinese)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  113
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 修回日期:  2023-09-03
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回