留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接触与大变形问题的光滑有限元分析

范亚杰 李燕 李中潘 陈荟键 冯志强

范亚杰, 李燕, 李中潘, 陈荟键, 冯志强. 接触与大变形问题的光滑有限元分析[J]. 应用数学和力学, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251
引用本文: 范亚杰, 李燕, 李中潘, 陈荟键, 冯志强. 接触与大变形问题的光滑有限元分析[J]. 应用数学和力学, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251
FAN Yajie, LI Yan, LI Zhongpan, CHEN Huijian, FENG Zhiqiang. Smoothed Finite Element Analysis of Contact and Large Deformation Problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251
Citation: FAN Yajie, LI Yan, LI Zhongpan, CHEN Huijian, FENG Zhiqiang. Smoothed Finite Element Analysis of Contact and Large Deformation Problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. doi: 10.21656/1000-0887.440251

接触与大变形问题的光滑有限元分析

doi: 10.21656/1000-0887.440251
(我刊编委冯志强来稿)
基金项目: 

国家自然科学基金 12002290

详细信息
    作者简介:

    范亚杰(1999—),男,硕士生(E-mail: fanyajie@my.swjtu.edu.cn)

    李中潘(1997—), 男,博士生(E-mail: 2017114420@my.swjty.edu.cn)

    陈荟键(1991—), 男,博士生(E-mail: huijianc@foxmail.com)

    冯志强(1963—),男,教授,博士生导师(E-mail: zhiqiang.feng@univ-evry.fr)

    通讯作者:

    李燕(1990—),女,副教授,硕士生导师(通讯作者. E-mail: yanli@swjtu.edu.cn)

  • 中图分类号: O343.3

Smoothed Finite Element Analysis of Contact and Large Deformation Problems

(Contributed by FENG Zhiqiang, M. AMM Editorial Board)
  • 摘要: 橡胶材料因具有良好的抗震、吸能作用,在实际工程中应用广泛.然而橡胶超弹性材料的碰撞属于强非线性问题,分析橡胶材料的接触碰撞和大变形问题对于提高装置的缓冲性能具有重要意义.光滑有限元法(smoothed finite element method,S-FEM)是一种弱形式的数值计算方法,相比于传统的有限元方法,光滑有限元法对网格的质量要求不高,允许单元在计算过程中发生较大的变形,且光滑域的构造比较灵活,在不增加自由度的前提下,可以达到较高的精度.在光滑有限元法的基础上,采用双势方法进行接触计算,以充分利用光滑有限元法计算大变形问题的优点和双势方法求解接触力的优势.通过与有限元软件MSC.Marc的数值结果对比,验证了该算法的准确性和能量守恒性,并且分析了摩擦因数对碰撞体的影响.
    1)  (我刊编委冯志强来稿)
  • 图  1  碰撞模型示意图

    Figure  1.  Schematic diagram of the collision model

    图  2  Coulomb摩擦锥

    Figure  2.  Coulomb's frictional cone

    图  3  四边形单元划分光滑域个数

    Figure  3.  Numbers of smooth domains to be divided

    图  4  有限元背景网格被划分为4个光滑域

    Figure  4.  The finite element background mesh divided into 4 smooth domains

    图  5  超弹性体的碰撞模型

    Figure  5.  The collision model for hyperelastic bodies

    图  6  3种工况下的von Mises应力图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The von Mises stress contours for 3 conditions

    图  7  与MSC.Marc的一致性对比

    Figure  7.  Conformity comparison with MSC.Marc

    图  8  摩擦因数对点O位移、速度的影响

    Figure  8.  Effects of the friction coefficient on displacements and velocities of point O

    图  9  超弹性体碰撞模型

    Figure  9.  The collision model for hyperelastic bodies

    图  10  各个时刻下的von Mises应力图

    Figure  10.  The von Mises stress diagrams at various moments

    图  11  接触带1的节点位移-时间历程图

    Figure  11.  Nodal displacement-time histories for contact zone 1

    图  12  与MSC.Marc的一致性对比

    Figure  12.  Conformity comparison with MSC.Marc

    图  13  两个小球碰撞模型图

    Figure  13.  The model for 2 colliding balls

    图  14  接触带1-2的节点位移-时间历程图(Vy0, L=-20 m/s,Vy0, R=-20 m/s)

    Figure  14.  Nodal displacement-time histories of contact zones 1-2 (Vy0, L=-20 m/s, Vy0, R=-20 m/s)

    图  15  Von Mises应力图(Vy0, L=-20 m/s,Vy0, R=-20 m/s)

    Figure  15.  The von Mises stress contour (Vy0, L=-20 m/s, Vy0, R=-20 m/s)

    图  16  与MSC.Marc的一致性对比(Vy0, L=-20 m/s,Vy0, R=-20 m/s)

    Figure  16.  Conformity comparison with MSC.Marc(Vy0, L=-20 m/s, Vy0, R=-20 m/s)

    图  17  接触带1-2的节点位移-时间历程图(Vy0, L=-20 m/s,Vy0, R=-10 m/s)

    Figure  17.  Nodal displacement-time histories for contact zones 1-2(Vy0, L=-20 m/s, Vy0, R=-10 m/s)

    图  18  Von Mises应力图(Vy0, L=-20 m/s,Vy0, R=-10 m/s)

    Figure  18.  The von Mises stress contour (Vy0, L=-20 m/s, Vy0, R=-10 m/s)

    图  19  与MSC.Marc的一致性对比(Vy0, L=-20 m/s,Vy0, R=-10 m/s)

    Figure  19.  Conformity comparison with MSC.Marc(Vy0, L=-20 m/s, Vy0, R=-10 m/s)

    表  1  不同摩擦因数不同时刻下的3种工况

    Table  1.   Three conditions at different moments with different friction coefficients

    condition the moment the ball reaches the lowest point T/ms σmax/Pa
    μ=0.0 0.87 8.32E6
    μ=0.2 0.70 4.37E6
    μ=0.4 0.61 4.22E6
    下载: 导出CSV

    表  2  计算效率对比结果

    Table  2.   Comparison results of calculation efficiency

    time integration method contact algorithm total CPU TCPU/s
    MSC.Marc Newmark implicit penalty 9.48
    FEM 1st-order implicit bi-potential 20.1
    CSFEM-1SD 1st-order implicit bi-potential 9.887
    CSFEM-2SD 1st-order implicit bi-potential 11.058
    CSFEM-3SD 1st-order implicit bi-potential 12.415
    CSFEM-4SD 1st-order implicit bi-potential 13.495
    CSFEM-8SD 1st-order implicit bi-potential 17.627
    CSFEM-16SD 1st-order implicit bi-potential 26.314
    下载: 导出CSV
  • [1] YASKEVICH A. Real time math simulation of contact interaction during spacecraft docking and berthing[J]. Journal of Mechanics Engineering and Automation, 2014, 4: 1-15.
    [2] HUGHES P C. Spacecraft Attitude Dynamics[M]. Courier Corporation, 2012.
    [3] SUN Y, ZHAI W M, GUO Y. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(10/12): 1899-1921.
    [4] BROGLIATO B. Nonsmooth Mechanics: Models, Dynamics and Control[M]. Springer, 2016.
    [5] ZHANG J, WANG Q. Modeling and simulation of a frictional translational joint with a flexible slider and clearance[J]. Multibody System Dynamics, 2016, 38(4): 367-389. doi: 10.1007/s11044-015-9474-7
    [6] 聂攀. SMA弹簧-摩擦支座在网壳结构隔震控制中的参数分析[D]. 北京: 北京建筑大学, 2016.

    NIE Pan. Parametric analysis of SMA spring-friction bearings in the seismic control of mesh-shell structures[D]. Beijing: Beijing University of Architecture, 2016. (in Chinese)
    [7] 杨静, 潘文, 苏何先, 等. 天然橡胶支座大变形压剪性能的双非线性超弹性理论和实验研究[J]. 工程力学, 2022, 39(8): 200-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm

    YANG Jing, PAN Wen, SU Hexian, et al. Double nonlinear hyperelastic theory and experimental research on the large deformation of natural rubber bearing in compression and shear[J]. Engineering Mechanics, 2022, 39(8): 200-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202208022.htm
    [8] 郑伟, 闫立志, 张泽云, 等. 动车组车钩缓冲装置橡胶缓冲器失效机理分析及优化[J]. 城市轨道交通研究, 2022, 25(6): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm

    ZHENG Wei, YAN Lizhi, ZHANG Zeyun, et al. Failure mechanism analysis and performance optimization of rubber draft gear of coupler buffer in EMU[J]. Urban Mass Transit, 2022, 25(6): 171-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202206034.htm
    [9] 罗操群, 孙加亮, 文浩, 等多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm

    LUO Caoqun, SUN Jialiang, WEN Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002019.htm
    [10] BELYTSCHKO T, NEAL M O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods[J]. International Journal for Numerical Methods in Engineering, 2010, 31(3): 547-572.
    [11] FRANCAVILLA A, ZIENKIEWICZ O C. A note on numerical computation of elastic contact problems[J]. International Journal for Numerical Methods in Engineering, 2010, 9(4): 913-924.
    [12] DE SAXCÉ G, FENG Z Q. New inequality and functional for contact with friction: the implicit standard material approach[J]. Mechanics of Structures and Machines, 1991, 19(3): 301-325. doi: 10.1080/08905459108905146
    [13] FENG Z Q, JOLI P, CROS J M, et al. The bi-potential method applied to the modeling of dynamic problems with friction[J]. Computational Mechanics, 2005, 36(5): 375-383. doi: 10.1007/s00466-005-0663-8
    [14] 周洋靖, 冯志强, 彭磊. 双势积分算法在非关联材料中的应用[J]. 应用数学和力学, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139

    ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the bi-potential integration algorithm to non-associated materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. (in Chinese) doi: 10.21656/1000-0887.380139
    [15] PENG L, FENG Z Q, JOLI P, et al. Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation[J]. Computational Mechanics, 2019, 64(3): 611-623. doi: 10.1007/s00466-019-01672-9
    [16] THOMASJ R H. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. Prentice-Hall, 1987.
    [17] LI Y D, LI Y, FENG Z Q. A coupled particle model with particle shifting technology for simulating transient viscoelastic fluid flow with free surface[J]. Journal of Computational Physics, 2023, 488: 112213. doi: 10.1016/j.jcp.2023.112213
    [18] LIU G R. On G space theory[J]. International Journal of Computational Methods, 2009, 6(2): 257-289. doi: 10.1142/S0219876209001863
    [19] LIU G R. An overview on meshfree methods: for computational solid mechanics[J]. International Journal of Computational Methods, 2016, 13(5): 1630001. doi: 10.1142/S0219876216300014
    [20] LIU G R, TRUNG N T. Smoothed Finite Element Methods[M]. Boca Raton: CRC Press, 2010.
    [21] LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6): 859-877. doi: 10.1007/s00466-006-0075-4
    [22] LI Y, CHEN Q W, FENG Z Q. A cell-based smoothed finite element method for multi-body contact analysis within the bi-potential formulation[J]. Engineering Analysis With Boundary Elements, 2023, 148: 256-266. doi: 10.1016/j.enganabound.2022.12.023
    [23] CHEN Q W, LI Y, FENG Z Q, et al. Contact analysis within the bi-potential framework using cell-based smoothed finite element method[J]. International Journal of Computational Methods, 2021, 19(6): 2141004.
    [24] YUE J, LIU G R, LI M, et al. A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation[J]. International Journal of Solids and Structures, 2018, 141: 110-126.
    [25] TAMMA K K, NAMBURU R R. A robust self-starting explicit computational methodology for structural dynamic applications: architecture and representations[J]. International Journal for Numerical Methods in Engineering, 2010, 29(7): 1441-1454.
    [26] MOREAU J J. Quadratic programming in mechanics: dynamics of one-sided constraints[M]. SIAM Journal on Control and Optimization, 1966, 4(1): 153-158. doi: 10.1137/0304014
    [27] DE SAXCÉ G, FENG Z Q. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modelling, 1998, 28(4/8): 225-245.
    [28] GAO Y, STRANG G. Dual extremum principles in finite deformation elastoplastic analysis[J]. Acta Applicandae Mathematicae, 1989, 17: 257-267. doi: 10.1007/BF00047073
    [29] BLATZ P J, KO W L. Application of finite elastic theory to the deformation of rubbery materials[J]. Transactions of the Society of Rheology, 1962, 6(1): 223-252. doi: 10.1122/1.548937
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  118
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-11-29
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回