留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倒刺型接触超材料力学性能研究

田耕鑫 曹升虎 张健

田耕鑫, 曹升虎, 张健. 倒刺型接触超材料力学性能研究[J]. 应用数学和力学, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285
引用本文: 田耕鑫, 曹升虎, 张健. 倒刺型接触超材料力学性能研究[J]. 应用数学和力学, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285
TIAN Gengxin, CAO Shenghu, ZHANG Jian. Study on Mechanical Properties of Barbed Contact Metamaterials[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285
Citation: TIAN Gengxin, CAO Shenghu, ZHANG Jian. Study on Mechanical Properties of Barbed Contact Metamaterials[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285

倒刺型接触超材料力学性能研究

doi: 10.21656/1000-0887.440285
详细信息
    作者简介:

    田耕鑫(1999—),男,硕士生(E-mail: 1300907140@qq.com)

    通讯作者:

    曹升虎(1972—),男,副教授,博士,硕士生导师(通讯作者. E-mail: caosh@xaut.edu.cn)

  • 中图分类号: O34

Study on Mechanical Properties of Barbed Contact Metamaterials

  • 摘要: 受到一些植物茎部和部分猫科动物舌头上的倒刺结构在不同方向上表现出差异性的启发,该研究设计了一种可重复使用且易恢复的倒刺型超材料,并对其力学性能进行了理论分析和数值分析. 研究结果表明,在倒刺的往复运动中,当选取矩形截面高×宽为1 mm×1 mm,长为20 mm,且与竖直方向呈60°角的倒刺时,与阻挡凸台正向接触过程中的最大反力约为逆向接触过程中最大反力的20倍左右,而所消耗能量则相差约200倍. 当倒刺与竖直方向的角度减小时,倒刺结构吸收能量更多,恢复所需能量更少;当倒刺长度增大时,倒刺结构吸收能量减小,恢复时所需能量也减小. 这表明该结构具有出色的抗冲击性能和能量吸收能力,正逆向所需能量差异较大,结构更容易恢复,并且可以通过对倒刺角度和长度设计提升吸能效率.
  • 图  1  自然界中具有倒刺结构的生物

    Figure  1.  Organisms with barbed structures in the nature

    图  2  倒刺吸能超材料示意图

    Figure  2.  Schematic diagram of the barb-absorbing metamaterial

    图  3  倒刺吸能结构简化平面图

    Figure  3.  The simplified plan of the barbed energy absorption structure

    图  4  倒刺接触变形图

    Figure  4.  The barb contact deformation diagram

    图  5  实验数据拟合图

    Figure  5.  The experimental data fitting curve

    图  6  吸能与恢复过程理论分析与数值模拟力-位移对比图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  Theoretical analysis of energy absorption and recovery processes and numerical simulation of force-displacement curves

    图  7  倒刺与竖直方向不同角度下吸能和恢复方向的力-位移曲线

    Figure  7.  Force-displacement curves of energy absorption and recovery processes under different angles of barbed and vertical directions

    图  8  不同倒刺长度的吸能和恢复方向的力-位移曲线

    Figure  8.  Force-displacement curves of energy absorption and recovery processes with of different barb lengths

    表  1  吸能过程理论解与数值模拟凸台在不同位置时力的大小和凸台与倒刺脱离时的能量

    Table  1.   Theoretical solution of the energy absorption process and numerical simulation of the force of the rib in different positions and the energy of the rib at the moment of sepration from the barb

    displacement D/mm 1 3 5 6 7 10 15 17.84(separation) Eint/mJ
    FFEM/mN 4.04 12.35 20.01 23.58 33.38 51.97 71.32 72.91 0.644 2
    Ftheory/mN 4.01 12.18 19.71 23.14 32.52 51.06 69.95 70.22 0.627 9
    relative error δ 0.007 0.013 0.015 0.019 0.026 0.027 0.029 0.037 0.026
    下载: 导出CSV

    表  2  恢复过程理论解与数值模拟凸台在不同位置时力的大小和凸台与倒刺脱离时的能量

    Table  2.   The theoretical solution of the recovery process and the numerical simulation of the force of the rib in different positions and the energy of the rib at the moment of sepration from the barb

    displacement D/mm 1 1.5 2 2.14(separation) Eres/mJ
    FFEM/mN 1.53 2.56 4.03 4.52 0.003 30
    Ftheory/mN 1.52 2.54 3.99 4.45 0.003 26
    relative error δ 0.006 0.008 0.010 0.015 0.011
    下载: 导出CSV

    表  3  倒刺与竖直方向不同角度下吸能和恢复所用能量及比能耗

    Table  3.   The absorption and recovery of energy and specific energy consumption in barbed and vertical directions at different angles

    angle φ/(°) 40 50 60 70 80
    energy-absorption Eint/mJ 1.592 1 1.059 55 0.644 2 0.372 7 0.093
    energy-recovery Eres/mJ 0.001 9 0.003 0.003 3 0.005 0.007 3
    specific energy consumption Eint/Eres 837.95 353.18 195.21 74.54 12.74
    下载: 导出CSV

    表  4  不同倒刺长度的吸能和恢复所用能量及比能耗

    Table  4.   Energy absorption and recovery energy and specific energy consumption with different barb lengths

    length L/mm 20 22 24 26 28
    energy-absorption Eint/mJ 0.644 2 0.551 5 0.530 6 0.453 8 0.437 3
    energy-recovery Eres/mJ 0.003 3 0.002 5 0.002 3 0.001 6 0.001 3
    specific energy consumption Eint/Eres 195.21 220.60 230.70 283.63 336.38
    下载: 导出CSV
  • [1] XU R, HE Y, LI X, et al. Snap-fit mechanical metamaterials[J]. Applied Materials Today, 2023, 30: 101714. doi: 10.1016/j.apmt.2022.101714
    [2] PAN F, LI Y, LI Z, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31(25): 1900548. doi: 10.1002/adma.201900548
    [3] 王竞哲, 陈保才, 朱绍伟, 等. 圆锥形负刚度超材料吸能性能研究[J]. 应用数学和力学, 2023, 44(10): 1172-1179. doi: 10.21656/1000-0887.440055

    WANG Jingzhe, CHEN Baocai, ZHU Shaowei, et al. Study on energy absorption performances of conical negative stiffness metamaterials[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1172-1179. (in Chinese) doi: 10.21656/1000-0887.440055
    [4] 姬忠莹, 闫昌友, 张晓琴, 等. 仿生取向结构表界面及其摩擦各向异性研究进展[J]. 表面技术, 2018, 47(6): 112-121.

    JI Zhongying, YAN Changyou, ZHANG Xiaoqin, et al. Research advances in biomimetic surfaces with oriented structures and its frictional anisotropy[J]. Surface Technology, 2018, 47(6): 112-121. (in Chinese)
    [5] MA S, SCARAGGI M, YAN C, et al. Bioinspired 3D printed locomotion devices based on anisotropic friction[J]. Small, 2018, 15(1): 1802931.
    [6] KLATT T, HABERMAN M R. A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model[J]. Journal of Applied Physics, 2013, 114(3): 033503. doi: 10.1063/1.4813233
    [7] FANG N, XI D, XU J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456. doi: 10.1038/nmat1644
    [8] DING Y, LIU Z, QIU C, et al. Metamaterial with simultaneously negative bulk modulus and mass density[J]. Physical Review Letters, 2007, 99(9): 093904. doi: 10.1103/PhysRevLett.99.093904
    [9] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040. doi: 10.1126/science.235.4792.1038
    [10] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering, 1984, 2(3): 263-281. doi: 10.1016/0734-743X(84)90010-1
    [11] REID S R, REDDY T Y, GRAY M D. Static and dynamic axial crushing of foam-filled sheet metal tubes[J]. International Journal of Mechanical Sciences, 2011, 28(5): 295-322.
    [12] REDDY T Y, REID S R. Axial splitting of circular metal tubes[J]. International Journal of Mechanical Sciences, 1986, 28(2): 111-131. doi: 10.1016/0020-7403(86)90018-4
    [13] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1): 105-114.

    HOU Hailiang, ZHU Xi, LI Wei. Investigation on bullet proof mechanism of light ceramic/steel composite armor[J]. Acta Armamentarii, 2013, 34(1): 105-114. (in Chinese)
    [14] 侯海量, 朱锡, 阚于龙. 陶瓷材料抗冲击响应特性研究进展[J]. 兵工学报, 2008, 29(1): 94-99.

    HOU Hailiang, ZHU Xi, KAN Yulong. Advance ot dynamic behavior of ceramic material under the impact of projectile[J]. Acta Armamentarii, 2008, 29(1): 94-99. (in Chinese)
    [15] CONWAY H D. The nonlinear bending of thin circular rods[J]. Journal of Applied Mechanics, 1956, 23(1): 7-10.
    [16] 裴晓辉. 悬臂梁平面大变形的椭圆函数解[D]. 西安: 西安电子科技大学, 2014.

    PEI Xiaohui. Elliptic function solution to large-deflection problems of cantilever beams[D]. Xi'an: Xidian University, 2014. (in Chinese)
    [17] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2011: 175-189.

    LIU Hongwen. Mechanics of Materials[M]. Beijing: Higher Education Press, 2011: 175-189. (in Chinese)
    [18] SHVARTSMAN B S. Large deflections of a cantilever beam subjected to a follower force[J]. Journal of Sound and Vibration, 2007, 304(3): 969-973.
    [19] GREENHILL G. The Applications of Elliptic Functions[M]. London: Macmillan, 1892: 277-305.
    [20] ARMITAGE J V, EBERLEIN W F. Elliptic Functions[M]. Cambridge: Cambridge University Press, 2006: 324-366.
    [21] HOWELL L L, MIDHA A. A method for the design of compliant mechanisms with small-length flexural pivots[J]. Journal of Mechanical Design, 1994, 116(1): 280-290.
    [22] JONSSON A. Some guidelines for implicit analyses using LS-DYNA[Z]. 4th revision. 2014.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  59
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-25
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回