Investigation of the Immersed Boundary Method Based on the Inverse Distance Weighted Interpolation Reconstruction
edited-by
edited-by
Recommended by KOU Jiaqing, M.AMM Youth Editorial Board-
摘要: 提出了一种自适应的幂参数反距离加权(adaptive power parameter inverse distance weighted, AIDW)的重构方法,旨在提高虚拟网格法在处理沉浸边界问题时的精确性. AIDW利用了反距离加权插值的特性,结合插值节点的物理量分布与局部流动特性的综合信息,以自动调整幂参数的值,从而在各种流场条件下提升重构精度. 该方法尤其在处理复杂边界附近的间断界面时存在优势. 通过倾斜激波管和圆柱Couette流动两个算例的数值模拟,AIDW展现出了其在修正间断界面的扭曲和提高流场物理量分布精度方面的优势.
-
关键词:
- 沉浸式边界法 /
- 虚拟网格法 /
- 反距离加权插值 /
- Descartes网格
Abstract: An adaptive power parameter inverse distance weighted (AIDW) reconstruction method to enhance the accuracy of the ghost cell method, was proposed for handling of immersed boundary. The AIDW utilizes the characteristics of the inverse distance weighted interpolation, integrating comprehensive information from the distribution of physical parameters at interpolation nodes with local flow properties to automatically adjust the power parameter value, to improve the reconstruction precision across various flow conditions, particularly in the cases of discontinuities near complex boundaries. Numerical simulations of 2 examples of an inclined shock tube and a cylindrical Couette flow demonstrate advantages of the AIDW in correcting distortions at discontinuous interfaces and in enhancing the accuracy of the physical parameter distribution.-
Key words:
- immersed boundary method /
- ghost cell method /
- inverse distance weighted interpolation /
- Cartesian grid
edited-byedited-by1) 我刊青年编委寇家庆来稿 -
表 1 倾斜激波管流动参数
Table 1. Inclined shock tube flow parameters
test ρL uL pL ρR uR pR time 1 1.0 0.0 1.0 0.125 0.0 0.1 0.2 2 1.0 0.0 1.0 0.1 0.0 1.0 5.0 -
[1] PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479-517. doi: 10.1017/S0962492902000077 [2] MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743 [3] CLARKE D K, SALAS M D, HASSAN H A. Euler calculations for multielement airfoils using Cartesian grids[J]. AIAA Journal, 1986, 24(3): 353-358. doi: 10.2514/3.9273 [4] UDAYKUMAR H S, SHYY W, RAO M M. ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries[J]. International Journal for Numerical Methods in Fluids, 1996, 22(8): 691-712. doi: 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U [5] YE T, MITTAL R, UDAYKUMAR H S, et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries[J]. Journal of Computational Physics, 1999, 156(2): 209-240. doi: 10.1006/jcph.1999.6356 [6] FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161(1): 35-60. doi: 10.1006/jcph.2000.6484 [7] LUO H, MITTAL R, ZHENG X, et al. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation[J]. Journal of Computational Physics, 2008, 227(22): 9303-9332. doi: 10.1016/j.jcp.2008.05.001 [8] TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192(2): 593-623. doi: 10.1016/j.jcp.2003.07.024 [9] KIM J, KIM D, CHOI H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal of Computational Physics, 2001, 171(1): 132-150. doi: 10.1006/jcph.2001.6778 [10] GHIAS R, MITTAL R, DONG H. A sharp interface immersed boundary method for compressible viscous flows[J]. Journal of Computational Physics, 2007, 225(1): 528-553. doi: 10.1016/j.jcp.2006.12.007 [11] GILMANOV A, SOTIROPOULOS F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207(2): 457-492. doi: 10.1016/j.jcp.2005.01.020 [12] KIM D, CHOI H. Immersed boundary method for flow around an arbitrarily moving body[J]. Journal of Computational Physics, 2006, 212(2): 662-680. doi: 10.1016/j.jcp.2005.07.010 [13] SCHNEIDERS L, HARTMANN D, MEINKE M, et al. An accurate moving boundary formulation in cut-cell methods[J]. Journal of Computational Physics, 2013, 235: 786-809. doi: 10.1016/j.jcp.2012.09.038 [14] FAVIER J, REVELL A, PINELLI A. A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects[J]. Journal of Computational Physics, 2014, 261: 145-161. doi: 10.1016/j.jcp.2013.12.052 [15] MITTAL R, DONG H, BOZKURTTAS M, et al. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J]. Journal of Computational Physics, 2008, 227(10): 4825-4852. doi: 10.1016/j.jcp.2008.01.028 [16] TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction[M]. Berlin, Heidelberg: Springer, 2013. [17] 郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.420063ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese) doi: 10.21656/1000-0887.420063 [18] HARTEN A, LAX P D, VAN LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1): 35-61. doi: 10.1137/1025002 [19] OSHER S, FEDKIW R, PIECHOR K. Level set methods and dynamic implicit surfaces[J]. Applied Mechanics Reviews, 2004, 57(3): B15. http://scans.hebis.de/10/87/16/10871634_toc.pdf [20] 李慧玲, 胡晓磊, 余子寒, 等. 玻璃微珠液滴碰撞分离过程数值研究[J]. 应用数学和力学, 2023, 44(12): 1512-1521.LI Huiling, HU Xiaolei, YU Zihan, et al. Numerical study on the collision-separation process of glass bead droplets[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1512-1521. (in Chinese) [21] SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23 rd ACM National Conference. 1968: 517-524. [22] FRANKE R, NIELSON G. Smooth interpolation of large sets of scattered data[J]. International Journal for Numerical Methods in Engineering, 1980, 15(11): 1691-1704. doi: 10.1002/nme.1620151110 [23] MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary non-conforming grids[J]. Annual Research Briefs, 2001, 1: 179. http://www.stanford.edu/group/ctr/ResBriefs01/sekhar.pdf [24] 徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960.XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. (in Chinese) -