留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法

侯雅馨 刘洋 李宏

侯雅馨, 刘洋, 李宏. 非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法[J]. 应用数学和力学, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
引用本文: 侯雅馨, 刘洋, 李宏. 非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法[J]. 应用数学和力学, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
HOU Yaxin, LIU Yang, LI Hong. A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
Citation: HOU Yaxin, LIU Yang, LI Hong. A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013

非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法

doi: 10.21656/1000-0887.450013
基金项目: 

NMGIRT2207)

国家自然科学基金(12161063);内蒙古自治区 “创新团队发展计划” (NMGIRT2413

详细信息
    作者简介:

    侯雅馨(1991—),女,讲师,博士(E-mail: houyaxin@imut.edu.cn);刘洋(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: mathliuyang@imu.edu.cn);李宏(1973—),女,教授,博士,博士生导师(E-mail: smslh@imu.edu.cn).

    通讯作者:

    刘洋(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: mathliuyang@imu.edu.cn).

  • 中图分类号: O357.41

A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations

Funds: 

The National Science Foundation of China(12161063)

  • 摘要:

    构造了一种基于带有位移参数θ的广义向后差分公式(广义BDF2-θ)的有限元(FE)方法,用于求解非线性时间分布阶双曲波动方程.时间方向由广义BDF2-θ近似进一步得到FE全离散格式.将具有高阶时间导数的模型转化为包括两个低阶方程的耦合系统.证明了格式的稳定性以及两个函数u和p的最优误差估计结果.最后,通过数值算例验证了格式的可行性和有效性.

  • [2]CAO Y, YIN B L, LIU Y, et al. Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem[J].Computational and Applied Mathematics,2018,37(4): 5126-5145.
    TAN Z J, ZENG Y H. Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations[J].Applied Mathematics and Computation,2024,466: 128457.
    [3]CHEN Y P, GU Q L, LI Q F, et al. A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations[J].Journal of Computational Mathematics,2022,40(6): 936-954.
    [4]DING H F, LI C P. A high-order algorithm for time-caputo-tempered partial differential equation with riesz derivatives in two spatial dimensions[J].Journal of Scientific Computing,2019,80(1): 81-109.
    [5]LI L M, XU D, LUO M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation[J].Journal of Computational Physics,2013,255: 471-485.
    [6]REN J C, SUN Z Z. Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions[J].Journal of Scientific Computing,2013,56(2): 381-408.
    [7]CHEN M H, DENG W H. A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation[J].Applied Mathematics Letters,2017,68: 87-93.
    [8]WANG Z B, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J].Journal of Computational Physics,2014,277: 1-15.
    [9]YU B, JIANG X Y, WANG C. Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium[J].Applied Mathematics and Computation,2016,274: 106-118.
    [10]ZENG F H. Second-order stable finite difference schemes for the time-fractional diffusion-wave equation[J].Journal of Scientific Computing,2015,65(1): 411-430.
    [11]DU R L, SUN Z Z, WANG H. Temporal second-order finite difference schemes for variable-order time-fractional wave equations[J].SIAM Journal on Numerical Analysis,2022,60(1): 104-132.
    [12]CAO F F, ZHAO Y M, WANG F L, et al. Nonconforming mixed FEM analysis for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation with time-space coupled derivative[J].Advances in Applied Mathematics and Mechanics,2023,15(2): 322-358.
    [13]吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022,43(2): 215-223. (WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J].Applied Mathematics and Mechanics,2022,43(2): 215-223. (in Chinese))
    [14]HEYDARI M H, HOOSHMANDASL M R, GHAINI F M M, et al. Wavelets method for the time fractional diffusion-wave equation[J].Physics Letters A,2015,379(3): 71-76.
    [15]刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法[J]. 应用数学和力学, 2023,44(6): 731-743. (LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama method for variable fractional stochastic differential equations with caputo derivatives[J].Applied Mathematics and Mechanics,2023,44(6): 731-743. (in Chinese))
    [16]汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021,42(8): 832-840. (WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J].Applied Mathematics and Mechanics,2021,42(8): 832-840. (in Chinese))
    [17]CHECHKIN A V, GORENFLO R, SOKOLOV I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations[J].Physical Review E,2002,66(4): 046129.
    [18]NIU Y X, LIU Y, LI H, et al. Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media[J].Mathematics and Computers in Simulation,2023,203: 387-407.
    [19]WEI L L, LIU L J, SUN H X. Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order[J].Journal of Applied Mathematics and Computing,2019,59(1): 323-341.
    [20]DIETHELM K, FORD N J. Numerical analysis for distributed-order differential equations[J].Journal of Computational and Applied Mathematics,2009,225(1): 96-104.
    [21]RAN M, ZHANG C J. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order[J].Applied Numerical Mathematics,2018,129: 58-70.
    [22]BU W P, XIAO A G, ZENG W. Finite difference/finite element methods for distributed-order time fractional diffusion equations[J].Journal of Scientific Computing,2017,72(1): 422-441.
    [23]YIN B L, LIU Y, LI H, et al. Approximation methods for the distributed order calculus using the convolution quadrature[J].Discrete & Continuous Dynamical Systems B,2021,26(3): 1447-1468.
    [24]WEN C, LIU Y, YIN B L, et al. Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model[J].Numerical Algorithms,2021,88(2): 523-553.
    [25]ZHANG H,LIU F W, JIANG X Y, et al. A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation[J].Computers & Mathematics With Applications,2018,76(10): 2460-2476.
    [26]JIAN H Y, HUANG T Z, GU X M, et al. Fast second-order implicit difference schemes for time distributed-order andRiesz space fractional diffusion-wave equations[J].Computers & Mathematics With Applications,2021,94: 136-154.
    [27]ATANACKOVIC T M, PILIPOVIC S, ZORICA D. Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod[J]. International Journal of Engineering Science,2011,49(2): 175-190.
    [28]GORENFLO R, LUCHKO Y, STOJANOVIC M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density[J].Fractional Calculus and Applied Analysis,2013,16(2): 297-316.
    [29]YE H, LIU F W, ANH V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains[J]. Journal of Computational Physics,2015,298: 652-660.
    [30]GAO G H, SUN Z Z. Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations[J].Journal of Scientific Computing,2016,69(2): 506-531.
    [31]TOMOVSKI , SANDEV T. Distributed-order wave equations with composite time fractional derivative[J].International Journal of Computer Mathematics,2018,95(6/7): 1100-1113.
    [32]HENDY A S, DE STAELEN R H, PIMENOV V G. A semi-linear delayed diffusion-wave system with distributed order in time[J].Numerical Algorithms,2018,77(3): 885-903.
    [33]DEHGHAN M, ABBASZADEH M. A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation[J].Mathematical Methods in the Applied Sciences,2018,41(9): 3476-3494.
    [34]LI X L, RUI H X. A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation[J].Applied Numerical Mathematics,2018,131: 123-139.
    [35]JANNO J. Determination of time-dependent sources and parameters of nonlocal diffusion and wave equations from final data[J].Fractional Calculus and Applied Analysis,2020,23(6): 1678-1701.
    [36]ENGSTRM C, GIANI S, GRUBISIC L. Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms[J].Journal of Computational and Applied Mathematics,2023,425: 115035.
    [37]YIN B L, LIU Y, LI H. A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations[J].Applied Mathematics and Computation,2020,368: 124799.
    [38]LIU Y, DU Y W, LI H, et al. Some second-orderθ schemes combined with finite element method for nonlinear fractional cable equation[J].Numerical Algorithms,2019,80(2): 533-555.
    [39]GHURAIBAWI A A, MARASI H R, DERAKHSHAN M H, et al. An efficient numerical method for the time-fractional distributed order nonlinear Klein-Gordon equation with shifted fractional Gegenbauer multi-wavelets method[J].Physica Scripta,2023,98(8): 084001.
    [40]WANGJ F, YIN B L, LIU Y, et al. Mixed finite element algorithm for a nonlinear time fractional wave model[J].Mathematics and Computers in Simulation,2021,188: 60-76.
    [41]DURN R G, LOMBARDI A L. Finite element approximation of convection diffusion problems using graded meshes[J].Applied Numerical Mathematics,2006,56(10/11): 1314-1325.
    [42]STYNES M, O’RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J].SIAM Journal on Numerical Analysis,2017,55(2): 1057-1079.
    [43]CHEN H B, XU D, ZHOU J. A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel[J].Journal of Computational and Applied Mathematics,2019,356: 152-163.
    [44]YANG Z, ZENG F H. A corrected L1 method for a time-fractional subdiffusion equation[J].Journal of Scientific Computing,2023,95(3): 85.
    [45]YIN B L, LIU Y, LI H, et al. Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes[J].BIT Numerical Mathematics,2022,62(2): 631-666.
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-03-25

目录

    /

    返回文章
    返回