留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维有限元的EEP单元及其自适应分析

杨帅 袁驷

杨帅, 袁驷. 一维有限元的EEP单元及其自适应分析[J]. 应用数学和力学, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
引用本文: 杨帅, 袁驷. 一维有限元的EEP单元及其自适应分析[J]. 应用数学和力学, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
YANG Shuai, YUAN Si. EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
Citation: YANG Shuai, YUAN Si. EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036

一维有限元的EEP单元及其自适应分析

doi: 10.21656/1000-0887.450036
基金项目: 

国家自然科学基金(51878383;51378293)

详细信息
    作者简介:

    杨帅(1997—),男,博士生(通讯作者. E-mail: s-yang20@mails.tsinghua.edu.cn);袁驷(1953—),男,教授,博士.

    通讯作者:

    杨帅(1997—),男,博士生(通讯作者. E-mail: s-yang20@mails.tsinghua.edu.cn).

  • 中图分类号: O342

EEP Elements for the 1D Finite Element Method and the Adaptivity Analysis

Funds: 

The National Science Foundation of China(51878383;51378293)

  • 摘要: 对m(>1)次单元,基于单元能量投影(element energy projection,简称EEP)法提出的简约格式位移解u*具有比常规有限元解uh至少高一阶的精度,据此提出了EEP单元概念,并给出以EEP单元作为最终解的自适应有限元求解策略.通过编制相应的计算程序分析了一维非自伴随问题,计算结果与理论预期吻合较好,验证了自适应求解策略的有效性和可靠性.研究结果表明:该法可以给出按最大模度量、逐点满足误差限的解答,相较于常规单元,最终的求解单元数更少.
  • BABUSKA I, RHEINBOLDT W C. A-posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering,1978,12(10): 1597-1615.
    [2]BABUSKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering,1979,17: 519-540.
    [3]STRANG W G, FIX G J. An Analysis of the Finite Element Method[M]. New Jersey: Prentice-Hall, 1973.
    [4]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1331-1364.
    [5]ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering,1992,33(7): 1365-1382.
    [6]KU J, STYNES M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems[J]. BIT Numerical Mathematics,2024,64(1): 7.
    [7]BRUNNER M, INNERBERGER M, MIRAI A, et al. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs[J]. IMA Journal of Numerical Analysis,2024,44(3): 1560-1596.
    [8]WANG C, PING X, WANG X. An adaptive finite element method for crack propagation based on a multifunctional super singular element[J]. International Journal of Mechanical Sciences,2023,247: 108191.
    [9]裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024,45(4): 391-399. (QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics,2024,45(4): 391-399. (in Chinese))
    [10]袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004,21(2): 1-9.(YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional fem[J]. Engineering Mechanics,2004,21(2): 1-9.(in Chinese))
    [11]袁驷, 和雪峰. 基于EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2006,27(11): 1280-1291. (YUAN Si, HE Xuefeng. Self-adaptive strategy for one-dimensional finite element method based on EEP method[J]. Applied Mathematics and Mechanics,2006,27(11): 1280-1291. (in Chinese))
    [12]YUAN S, WU Y, XING Q. Recursive super-convergence computation for multi-dimensional problemsvia one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition),2018,39(7): 1031-1044.
    [13]YUAN S, YUAN Q. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions[J]. Applied Mathematics and Mechanics (English Edition),2022,43(4): 603-614.
    [14]JIANG K, YUAN S, XING Q. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique[J]. Engineering Computations,2020,37(8): 2847-2869.
    [15]袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式: Ⅰ算法公式[J]. 工程力学, 2007,24(10): 1-5.(YUAN Si, WANG Xu, XING Qinyan, et al. A scheme with optimal order of super-convergence based on eep method: Ⅰ formulation[J]. Engineering Mechanics,2007,24(10): 1-5.(in Chinese))
    [16]袁驷, 杨帅. 一维Galerkin有限元EEP超收敛计算的加强格式[J/OL]. 工程力学, 2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(YUAN Si, YANG Shuai. Enhanced form for EEP super-convergence calculation in one-dimensional Galerkin finite element method[J/OL]. Engineering Mechanics,2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.(in Chinese))
    [17]袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014,31(12): 1-3.(YUAN Si, XING Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics,2014,31(12): 1-3.(in Chinese))
    [18]黄泽敏, 袁驷. 线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算[J]. 工程力学, 2022,39(S1): 9-14.(HUANG Zemin, YUAN Si. Nodal accuracy improvement and super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics,2022,39(S1): 9-14.(in Chinese))
    [19]张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996,35(4): 421-429.(ZHANG Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam[J]. Journal of Fudan University (Natural Science), 1996,35(4): 421-429.(in Chinese))
    [20]赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000,23(4): 6-11.(ZHAO Xinzhong, CHEN Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence[J]. Journal of Natural Science of Hunan Normal University,2000,23(4): 6-11.(in Chinese))
    [21]孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019,36(2): 17-25.(SUN Haohan, YUAN Si. Performance of the adaptive finite element method based on the element-energy-projection technique[J]. Engineering Mechanics,2019,36(2): 17-25.(in Chinese))
  • 加载中
计量
  • 文章访问数:  14
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-05-08

目录

    /

    返回文章
    返回