留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法

张漫哲 顾水涛 冯志强

张漫哲, 顾水涛, 冯志强. 基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法[J]. 应用数学和力学, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
引用本文: 张漫哲, 顾水涛, 冯志强. 基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法[J]. 应用数学和力学, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
ZHANG Manzhe, GU Shuitao, FENG Zhiqiang. Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity[J]. Applied Mathematics and Mechanics, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
Citation: ZHANG Manzhe, GU Shuitao, FENG Zhiqiang. Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity[J]. Applied Mathematics and Mechanics, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038

基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法

doi: 10.21656/1000-0887.450038
详细信息
    作者简介:

    张漫哲(1999—),男,硕士生(E-mail: 2238428037@qq.com);顾水涛(1979—),男,教授(E-mail: gust@cqu.edu.cn);冯志强(1963—),男,教授,博士生导师(通讯作者. E-mail: zhiqiang.feng@univ-evry.fr).

    通讯作者:

    冯志强(1963—),男,教授,博士生导师(通讯作者. E-mail: zhiqiang.feng@univ-evry.fr).

  • 中图分类号: O343.4

Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity

  • 摘要: 研究并探讨了基于应力的双向渐进结构拓扑优化(BESO)法在修正偶应力弹性理论中的应用.该方法允许对尺寸问题相关的微观结构均质连续体进行拓扑优化.其通过引入一种与尺寸相关的,基于修正偶应力理论的,非经典等效应力的新颖公式,对经典的BESO技术进行了扩展,并在体积约束的条件下进行应力最小化设计.设计变量的迭代更新依赖于灵敏度分析,其涉及对目标函数p范数全局应力的直接求导.理论中涉及高阶弹性,因此为了满足有限元实现时需要的C1节点连续性,在插值中将传统的Lagrange插值与一个含待定系数的插值函数相结合.通过三个不同的数值算例,分析了尺寸效应对应力优化设计过程及结果的影响.同时探讨了其他参数包括范数p值和材料体积分数的作用.获得的研究结果证明了所提出的基于应力的BESO方法在涉及尺寸效应相关的拓扑优化设计方向的潜力.
  • BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2): 197-224.
    [2]BENDSOE M P. Optimal shape design as a material distribution problem[J].Structural Optimization,1989,1(4): 193-202.
    [3]SIGMUND O. On the design of compliant mechanisms using topology optimization[J].Mechanics of Structures and Machines,1997,25(4): 493-524.
    [4]ROZVANY G I N. Topology optimization in structural mechanics[J].Structural and Multidisciplinary Optimization,2001,21(2): 89.
    [5]ROZVANY G I N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J].Structural and Multidisciplinary Optimization,2001,21(2): 90-108.
    [6]WALLIN M, TORTORELLI D A. Nonlinear homogenization for topology optimization[J].Mechanics of Materials,2020,145: 103324.
    [7]DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J].Applied Thermal Engineering,2017,112: 841-854.
    [8]BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J].International Journal of Heat and Mass Transfer,2007,50(15/16): 2859-2873.
    [9]DHRING M B, JENSEN J S, SIGMUND O. Acoustic design by topology optimization[J].Journal of Sound and Vibration,2008,317(3/5): 557-575.
    [10]WADBRO E, BERGGREN M. Topology optimization of an acoustic horn[J].Computer Methods in Applied Mechanics and Engineering,2006,196(1/3): 420-436.
    [11]DESAI J, FAURE A, MICHAILIDIS G, et al. Topology optimization in acoustics and elasto-acoustics via a level-set method[J].Journal of Sound and Vibration,2018,420: 73-103.
    [12]MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J].Physical Review Applied,2018,10(2): 024012.
    [13]MAZZOTTI M, FOEHR A, BILAL O R, et al. Bio-inspired non self-similar hierarchical elastic metamaterials[J].International Journal of Mechanical Sciences,2023,241: 107915.
    [14]ERINGEN A.Microcontinuum Field Theories, 〖XCl1〗: Foundations and Solids[M]. New York : Springer, 2012.
    [15]COSSERAT E, COSSERAT F. Theorie des corps d’edormables[Z]. Cornell University Library Historical Math Monographs, 1909.
    [16]REDA H, ALAVI S E, NASIMSOBHAN M, et al. Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories[J].Mechanics of Materials,2021,155: 103728.
    [17]ERINGEN A C, SUHUBI E S. Nonlinear theory of simple micro-elastic solids, Ⅰ[J].International Journal of Engineering Science,1964,2(2): 189-203.
    [18]MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J].Archive for Rational Mechanics and Analysis,1962,11(1): 415-448.
    [19]TOUPIN R A. Elastic materials with couple-stresses[J].Archive for Rational Mechanics and Analysis,1962,11(1): 385-414.
    [20]LAI P, CONG Y, GU S, et al. Size-dependent parametrisation of active vibration control for periodic piezoelectric microplate coupled systems: a couple stress-based isogeometric approach[J].Mechanics of Materials,2023,186: 104788.
    [21]YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J].International Journal of Solids and Structures,2002,39(10): 2731-2743.
    [22]ROVATI M, VEBER D. Optimal topologies for micropolar solids[J].Structural and Multidisciplinary Optimization,2007,33(1): 47-59.
    [23]LIU S, SU W. Topology optimization of couple-stress material structures[J].Structural and Multidisciplinary Optimization,2010,40(1): 319-327.
    [24]SU W, LIU S. Topology design for maximization of fundamental frequency of couple-stress continuum[J].Structural and Multidisciplinary Optimization,2016,53(3): 395-408.
    [25]GANGHOFFER J F, GODA I, NOVOTNY A A, et al. Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization[J].ZAMM-Journal of Applied Mathematics and Mechanics,2018,98(5): 696-717.
    [26]CHEN W, HUANG X. Topological design of 3D chiral metamaterials based on couple-stress homogenization[J].Journal of the Mechanics and Physics of Solids,2019,131: 372-386.
    [27]YANG R J, CHEN C J. Stress-based topology optimization[J].Structural Optimization,1996,12(2): 98-105.
    [28]ROZVANY G I N. On design-dependent constraints and singular topologies[J].Structural and Multidisciplinary Optimization,2001,21(2): 164-172.
    [29]DUYSINX P, SIGMUND O. New developments in handling stress constraints in optimal material distribution[C]//〖STBX〗7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.St Louis, MO, USA, 1998. DOI: 10.2514/6.1998-4906.
    [30]BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J].Structural and Multidisciplinary Optimization,2008,36(2): 125-141.
    [31]LUO Y, WANG M Y, KANG Z. An enhanced aggregation method for topology optimization with local stress constraints[J].Computer Methods in Applied Mechanics and Engineering,2013,254: 31-41.
    [32]PICELLI R, TOWNSEND S, BRAMPTON C, et al. Stress-based shape and topology optimization with the level set method[J].Computer Methods in Applied Mechanics and Engineering,2018,329: 1-23.
    [33]HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J].Finite Elements in Analysis and Design,2007,43(14): 1039-1049.
    [34]XIA L, ZHANG L, XIA Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method[J].Computer Methods in Applied Mechanics and Engineering,2018,333: 356-370.
    [35]FAN Z, XIA L, LAI W, et al. Evolutionary topology optimization of continuum structures with stress constraints[J].Structural and Multidisciplinary Optimization,2019,59(2): 647-658.
    [36]ADACHI T, TOMITA Y, TANAKA M. Computational simulation of deformation behavior of 2D-lattice continuum[J].International Journal of Mechanical Sciences,1998,40(9): 857-866.
    [37]LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J].Structural and Multidisciplinary Optimization,2010,41(4): 605-620.
    [38]DUYSINX P, BENDSE M P. Topology optimization of continuum structures with local stress constraints[J].International Journal for Numerical Methods in Engineering,1998,43(8): 1453-1478.
    [39]KAHROBAIYAN M H, RAHAEIFARD M, AHMADIAN M T. A size-dependent yield criterion[J].International Journal of Engineering Science,2014,74: 151-161.
    [40]SIGMUND O. A 99 line topology optimization code written in Matlab[J].Structural and Multidisciplinary Optimization,2001,21(2): 120-127.
    [41]彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022,43(9): 976-986.(PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J].Applied Mathematics and Mechanics,2022,43(9): 976-986.(in Chinese))
    [42]叶彦鹏, 顾水涛, 刘敏, 等. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021,42(5): 441-451.(YE Yanpeng, GU Shuitao, LIU Min, et al. Optimization software development for offshore turbine transition structures based on LiToSim[J].Applied Mathematics and Mechanics,2021,42(5): 441-451.(in Chinese))
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-17

目录

    /

    返回文章
    返回