留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间分数阶导数的强-弱非局部连续介质本构建模

方俊 吴一石

方俊, 吴一石. 基于空间分数阶导数的强-弱非局部连续介质本构建模[J]. 应用数学和力学, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
引用本文: 方俊, 吴一石. 基于空间分数阶导数的强-弱非局部连续介质本构建模[J]. 应用数学和力学, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
FANG Jun, WU Yishi. Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative[J]. Applied Mathematics and Mechanics, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
Citation: FANG Jun, WU Yishi. Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative[J]. Applied Mathematics and Mechanics, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073

基于空间分数阶导数的强-弱非局部连续介质本构建模

doi: 10.21656/1000-0887.450073
基金项目: 

江苏省高校自然科学基金(面上项目) 21KJB510005

详细信息
    通讯作者:

    方俊(1986—),男,副教授,博士(通讯作者. E-mail: 346801730@qq.com)

  • 中图分类号: O345;O302

Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative

  • 摘要: 研究了以空间分数阶导数为基础的非局部介质本构建模方法,为研究复杂非局部材料的力学性能提供了理论指导. 首先,通过扩展Chen-Holm分数阶Laplace算子的定义,得到了新型0~4阶空间分数阶导数算子. 然后,基于强-弱非局部连续介质理论,建立了含该算子的非局部介质本构关系,并以此构建了新的力学元件. 通过对力学元件的不同组合,可以得到几类非局部分数阶导数本构模型:Kelvin模型、Maxwell模型和Zener模型. 此后,基于散射波方程与介质本构方程之间的关联性,确定了模型各参数的表达式及物理意义,并研究了部分模型的蠕变和应力松弛. 最后,通过含砂软土蠕变的实例研究,验证了非局部Kelvin模型的有效性.
  • 图  1  非局部弹簧元件

    Figure  1.  The non-local spring element

    图  2  非局部阻尼元件

    Figure  2.  The non-local damper element

    图  3  非局部Kelvin模型

    Figure  3.  The non-local Kelvin model

    图  4  修正的非局部Kelvin模型

    Figure  4.  The modified non-local Kelvin model

    图  5  非局部Maxwell模型

    Figure  5.  The non-local Maxwell model

    图  6  非局部Zener模型

    Figure  6.  The non-local Zener model

    图  7  d=104时,不同分数阶阶数s对应的非局部Kelvin模型在空间频域的蠕变曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  For d=104, the creep curves of the non-local Kelvin model corresponding to different fractional orders s in the spatial frequency domain

    图  8  s=0.1时,不同杂质平均尺寸d对应的非局部Kelvin模型在空间频域的蠕变曲线

    Figure  8.  For s=0.1, the creep curves of the non-local Kelvin model corresponding to different average sizes d of impurities in the spatial frequency domain

    图  9  d=10时,不同分数阶阶数s对应的非局部Maxwell模型在空间频域的应力松弛曲线

    Figure  9.  For d=10, the stress relaxation curves of the non-local Maxwell model corresponding to different fractional orders s in the spatial frequency domain

    图  10  s=0.1时,不同杂质平均尺寸d对应的非局部Maxwell模型在空间频域的应力松弛曲线

    Figure  10.  For s=0.1, the stress relaxation curves of the non-local Maxwell model corresponding to different average sizes d of impurities in the spatial frequency domain

    图  11  非局部Kelvin模型与经典Kelvin模型对含砂软土蠕变柔量的拟合曲线(荷载37.5 kPa)

    Figure  11.  Fitting curves for the creep flexibility of sand-bearing soft soil according to the non-local Kelvin model and the classical Kelvin model(37.5 kPa)

    图  12  非局部Kelvin模型与经典Kelvin模型对含砂软土蠕变柔量的拟合曲线(荷载87.5 kPa)

    Figure  12.  Fitting curves for the creep flexibility of sand-bearing soft soil according to the non-local Kelvin model and the classical Kelvin model(87.5 kPa)

  • [1] 陈荟键, 朱清锋, 苗鸿臣, 等. 受载结构中SH0波与裂纹作用的非线性散射场的数值研究[J]. 应用数学和力学, 2023, 44(4): 367-380. doi: 10.21656/1000-0887.440029

    CHEN Huijian, ZHU Qingfeng, MIAO Hongchen, et al. Numerical study of nonlinear scattering characteristics of SH0 waves encountering cracks in prestressed plates[J]. Applied Mathematics and Mechanics, 2023, 44(4): 367-380. (in Chinese) doi: 10.21656/1000-0887.440029
    [2] 邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

    DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
    [3] MENG C, WEI H, CHEN H, et al. Modeling plasticity of cubic crystals using a nonlocal lattice particle method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 385: 114069. doi: 10.1016/j.cma.2021.114069
    [4] FU L, ZHOU X P, BERTO F. A three-dimensional non-local lattice bond model for fracturing behavior prediction in brittle solids[J]. International Journal of Fracture, 2022, 234(1/2): 297-311.
    [5] SHEYKHI M, ESKANDARI A, GHAFARI D, et al. Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory[J]. Alexandria Engineering Journal, 2023, 65: 607-614. doi: 10.1016/j.aej.2022.10.016
    [6] TARASOV V E. General non-local electrodynamics: equations and non-local effects[J]. Annals of Physics, 2022, 445: 169082. doi: 10.1016/j.aop.2022.169082
    [7] ESEN I, DAIKH A A, ELTAHER M A. Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load [J]. The European Physical Journal Plus, 2021, 136(4): 1-22.
    [8] 田娅, 秦瑶, 向晶. 一类带有变指数非局部项的反应扩散方程解的爆破行为[J]. 应用数学和力学, 2022, 43(10): 1177-1184. doi: 10.21656/1000-0887.420180

    TIAN Ya, QIN Yao, XIANG Jing. Blow-up behaviors of solutions to reaction-diffusion equations with nonlocal sources and variable exponents[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1177-1184. (in Chinese) doi: 10.21656/1000-0887.420180
    [9] KRUMHANSL J A. Generalized continuum field representations for lattice vibrations[J]. Solid State Communications, 1963, 1(6): 198.
    [10] ERINGEN A C, WEGNER J L. Nonlocal continuum field theories[J]. Applied Mechanics Reviews, 2003, 56(2): B20-B22. doi: 10.1115/1.1553434
    [11] AIFANTIS E C. On the role of gradients in the localization of deformation and fracture[J]. International Journal of Engineering Science, 1992, 30(10): 1279-1299. doi: 10.1016/0020-7225(92)90141-3
    [12] LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. doi: 10.1016/j.jmps.2015.02.001
    [13] LAZOPOULOS K A. Non-local continuum mechanics and fractional calculus[J]. Mechanics Research Communications, 2006, 33(6): 753-757. doi: 10.1016/j.mechrescom.2006.05.001
    [14] CARPINTERI A, CORNETTI P, SAPORA A. Nonlocal elasticity: an approach based on fractional calculus[J]. Meccanica, 2014, 49(11): 2551-2569. doi: 10.1007/s11012-014-0044-5
    [15] VAIYAPURI S. Fractional derivative analysis of wave propagation studies using eringen's nonlocal model with elastic medium support[J]. Journal of Vibration Engineering & Technologies, 2022, 11(8): 3677-3685.
    [16] 庞国飞, 陈文. 基于Riesz势空间分数阶算子的非局部粘弹性力学元件[J]. 固体力学学报, 2017, 38(1): 47-54.

    (PANG Guofei, CHEN Wen. Nonlocal viscoelastic elements based on Riesz potential space-fractional operator[J]. Chinese Journal of Solid Mechanics, 2017, 38(1): 47-54. (in Chinese)
    [17] TARASOV V E, AIFANTIS E C. Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 197-227.
    [18] TARASOV V E. General non-local continuum mechanics: derivation of balance equations[J]. Mathematics, 2022, 10(9): 1427. doi: 10.3390/math10091427
    [19] WU X, WEN Z, JIN Y, et al. Broadband Rayleigh wave attenuation by gradient metamaterials[J]. International Journal of Mechanical Sciences, 2021, 205: 106592. doi: 10.1016/j.ijmecsci.2021.106592
    [20] HOLM S, NÄSHOLM S P. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography[J]. Ultrasound in Medicine & Biology, 2014, 40(4): 695-703.
    [21] HOLM S, NÄSHOLM S P. A causal and fractional all-frequency wave equation for lossy media[J]. The Journal of the Acoustical Society of America, 2011, 130(4): 2195-2202. doi: 10.1121/1.3631626
    [22] SAMKO S G, KILBAS A A, MARICEV O I. Fractional integrals and derivations and some applications[J]. Minsk: Nauka I Tekhnika, 1993, 3: 397-414.
    [23] CHEN W, HOLM S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1424-1430. doi: 10.1121/1.1646399
    [24] BUCKINGHAM M J. Wave-speed dispersion associated with an attenuation obeying a frequency power law[J]. The Journal of the Acoustical Society of America, 2015, 138(5): 2871-2884. doi: 10.1121/1.4932030
    [25] AIFANTIS E C. On the gradient approach-relation to Eringen's nonlocal theory[J]. International Journal of Engineering Science, 2011, 49(12): 1367-1377. doi: 10.1016/j.ijengsci.2011.03.016
    [26] ASRARI R, EBRAHIMI F, KHEIRIKHAH M M, SAFARI K H. Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory[J]. Mechanics Based Design of Structures and Machines, 2022, 50(3): 817-840. doi: 10.1080/15397734.2020.1728545
    [27] AIFANTIS E C. Fractional generalizations of gradient mechanics[M]//TARASOV V E. Handbook of Fractional Calculus With Applications, 2019: 241-262.
    [28] CHEN W, FANG J, PANG G, et al. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 244-253.
    [29] TREEBY B E, COX B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J]. The Journal of the Acoustical Society of America, 2010, 127(5): 2741-2748.
    [30] HOLM S, NÄSHOLM S P, PRIEUR F, et al. Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations[J]. Computers & Mathematics With Applications, 2013, 66(5): 621-629.
    [31] KHOKHLOV N, FAVORSKAYA A, STETSYUK V, et al. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones[J]. Journal of Computational Physics, 2021, 446: 110637.
    [32] OHARA Y, REMILLIEUX M C, ULRICH T J, et al. Exploring 3D elastic-wave scattering at interfaces using high-resolution phased-array system[J]. Scientific Reports, 2022, 12: 8291.
    [33] 方俊. 超声无损检测中声波散射衰减的分数阶导数建模研究[J]. 冶金与材料, 2019, 39(1): 7-11.

    FANG Jun. Fractional derivative modeling of frequency dependent scattering attenuation in ultrasonic non-destructive testing[J]. Metallurgy and Materials, 2019, 39(1): 7-11. (in Chinese)
    [34] 孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986.

    SUN Haizhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28(9): 1983-1986. (in Chinese)
  • 加载中
图(12)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-05-06
  • 刊出日期:  2025-06-01

目录

    /

    返回文章
    返回