留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壁内胆碳纤维全缠绕复合材料气瓶轴向残余变形及屈曲分析

赵亮 李亚伟 王建宝 李东东 丁帅 毕清洁

赵亮, 李亚伟, 王建宝, 李东东, 丁帅, 毕清洁. 薄壁内胆碳纤维全缠绕复合材料气瓶轴向残余变形及屈曲分析[J]. 应用数学和力学, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086
引用本文: 赵亮, 李亚伟, 王建宝, 李东东, 丁帅, 毕清洁. 薄壁内胆碳纤维全缠绕复合材料气瓶轴向残余变形及屈曲分析[J]. 应用数学和力学, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086
ZHAO Liang, LI Yawei, WANG Jianbao, LI Dongdong, DING Shuai, BI Qingjie. Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086
Citation: ZHAO Liang, LI Yawei, WANG Jianbao, LI Dongdong, DING Shuai, BI Qingjie. Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1224-1234. doi: 10.21656/1000-0887.450086

薄壁内胆碳纤维全缠绕复合材料气瓶轴向残余变形及屈曲分析

doi: 10.21656/1000-0887.450086
(我刊青年编委田阔推荐)
基金项目: 

国家重点研发计划“政府间国际科技创新合作”重点专项 2021YFE0115400

详细信息
    通讯作者:

    赵亮(1988—),男,工程师,硕士(通讯作者. E-mail: zhaol258@avic.com)

  • 中图分类号: TB332

Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders

(Recommended by TIAN Kuo, M.AMM Youth Editorial Board)
  • 摘要: 针对钛合金薄壁内胆碳纤维全缠绕复合材料气瓶水压试验后轴向缩短及内胆局部发生屈曲失稳现象,开展了试验研究及有限元分析. 结果表明:自紧加卸载后,封头靠近极孔区域沿轴向向内凹陷,封头靠近赤道区域沿径向向外扩张,封头整体沿轴向变短,试验和有限元计算的轴向缩短量为6.15 mm和6.363 mm,误差为3.46%,有限元计算结果与试验结果具有很好的一致性. 最后,采用多极孔法优化封头纤维层厚度分布,封头厚度极值降低32.6%,过渡更加均匀,优化后的气瓶沿轴向略有伸长,平均伸长为0.6 mm,采用CT和内窥镜检测,内胆均未出现屈曲失稳,有效地解决了水压试验后轴向缩短及内胆屈曲问题.
    1)  (我刊青年编委田阔推荐)
  • 图  1  气瓶的CT扫描检测图

    Figure  1.  The CT scanning image of the gas cylinder

    图  2  局部屈曲处的褶皱图片

    Figure  2.  Photos of wrinkles of local buckling

    图  3  内胆结构尺寸(单位: mm)

    Figure  3.  Liner structure dimensions (unit: mm)

    图  4  气瓶网格模型

    Figure  4.  The gas cylinder grid model

    图  5  气瓶边界条件

    Figure  5.  The cylinder boundary conditions

    图  6  水压试验压力卸载后轴向位移云图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The contour of axial displacements after unloading of hydraulic test pressure

    图  7  52.5 MPa时,内胆等效应力云图

    Figure  7.  The equivalent stress contour of the inner liner at 52.5 MPa

    图  8  52.5 MPa时,内胆等效塑性应变云图

    Figure  8.  The equivalent plastic strain contour of the inner liner at 52.5 MPa

    图  9  52.5 MPa时,内胆径向位移云图

    Figure  9.  The contour of radial displacements of the inner liner at 52.5 MPa

    图  10  水压卸载后的内胆径向应变云图

    Figure  10.  The radial strain contour of the inner liner after hydraulic unloading

    图  11  封头曲面加卸载前后轮廓变化

    Figure  11.  Profile changes before and after loading and unloading of the head surface

    图  12  水压卸载后内胆等效应力云图

    Figure  12.  The equivalent stress contour of the inner liner after hydraulic unloading

    图  13  水压卸载后内胆等效塑性应变云图

    Figure  13.  The equivalent plastic strain contour of the inner liner after hydraulic unloading

    图  14  扩孔缠绕

    Figure  14.  The reaming winding

    图  15  刚度优化后的封头有限元网格模型

    Figure  15.  The finite element mesh model of the head after stiffness optimization

    图  16  扩孔前后纤维厚度随平行圆变化曲线

    Figure  16.  Curves of fiber thicknesses with the parallel circle before and after reaming

    图  17  分析路径示意图

    Figure  17.  The analysis path diagram

    图  18  内胆内壁水压时内胆径向位移分布

    Figure  18.  Radial displacement distributions under pressure on inner wall of the liner

    图  19  内胆内壁水压卸载后的内胆轴向位移分布

    Figure  19.  Axial displacement distributions of the inner liner after water pressure unloading

    图  20  内胆内壁水压时内胆等效塑性应变分布

    Figure  20.  Equivalent plastic strain distributions under pressure on inner wall of the liner

    图  21  内胆内壁水压卸载后的内胆等效塑性应变分布

    Figure  21.  Equivalent plastic strain distributions of the inner liner after hydraulic unloading

    图  22  封头曲面加卸载前后轮廓变化

    Figure  22.  Profile changes before and after loading and unloading of the head surface

    表  1  气瓶水压试验数据

    Table  1.   Water pressure test data of the gas cylinder

    cylinder number residual deformation after loading and unloading dR/mm is the liner buckling and instable?
    C1 -6.20 yes
    C2 -6.00 yes
    C3 -6.10 yes
    C4 -6.30 yes
    下载: 导出CSV

    表  2  钛合金试样拉伸性能测试数据

    Table  2.   Tensile property test data of titanium alloy specimens

    number yield strength Rp0.2/MPa tensile strength Rm/MPa elastic modulus E/GPa
    S1 328.43 451.06 102.91
    S2 322.39 447.26 101.65
    S3 325.09 447.29 109.58
    S4 321.63 446.45 105.57
    S5 343.99 458.51 108.03
    S6 348.93 465.95 107.41
    S7 350.12 470.68 106.83
    S8 347.16 465.40 108.16
    下载: 导出CSV

    表  3  钛内胆主要性能参数(前封头、前筒身段)

    Table  3.   Main performance parameters of the titanium liner (front head, front cylinder section)

    elastic modulus E/GPa Poisson’s ratio μ yield strength Rp0.2/MPa tensile strength Rm/MPa elongation after fracture δ/%
    104.9 0.3 324 448 32
    下载: 导出CSV

    表  4  钛内胆主要性能参数(后封头、后筒身段)

    Table  4.   Main performance parameters of the titanium liner (rear head, rear cylinder section)

    elastic modulus E/GPa Poisson’s ratio μ yield strength Rp0.2/MPa tensile strength Rm/MPa elongation after fracture δ/%
    107.6 0.3 347 465 34
    下载: 导出CSV

    表  5  T1000级碳纤维/环氧树脂层性能参数

    Table  5.   T1000 carbon fiber/epoxy resin layer performance parameters

    E1/GPa E2/GPa E3/GPa μ12 μ23 μ13 G12/GPa G23/GPa G13/GPa
    193.1 11.41 11.41 0.33 0.49 0.33 7.09 3.79 7.09
    下载: 导出CSV

    表  6  水压压力加卸载后各部分变形计算值

    Table  6.   Calculated deformation values of each part after hydraulic pressure loading and unloading

    front head dFH/mm front body section dFB/mm rear body section dRB/mm rear head dRH/mm total dT/mm
    -3.297 1.318 1.530 -3.340 -6.363
    下载: 导出CSV
  • [1] 冯雪, 沈俊, 田桂, 等. 复合材料压力容器在航天领域的应用研究[J]. 火箭推进, 2014, 40 (4): 35-42.

    FENG Xue, SHEN Jun, TIAN Gui, et al. Research of composite over-wrapper pressure vessels for space application[J]. Journal of Rocket Propulsion, 2014, 40 (4): 35-42. (in Chinese)
    [2] 陈绍杰. 先进复合材料的现状和趋势: 第二十二届欧洲SAMPE国际会议与第三十六届JEC复合材料展览会评述[J]. 高科技纤维与应用, 2001(3): 1-5.

    CHEN Shaojie. Synthesis actuality and direction of advanced composite material[J]. Hi-Tech Fiber and Application, 2001(3): 1-5. (in Chinese)
    [3] 谢清泉, 朱美丽, 司慧涵. 压力容器用复合材料的性能与应用[J]. 现代制造技术与装备, 2014(2): 32-33.

    XIE Qingquan, ZHU Meili, SI Huihan. Performance and application of composite materials for pressure vessels[J]. Modern Manufacturing Technology and Equipment, 2014(2): 32-33. (in Chinese)
    [4] KIM C U, KANG J H, HONG C S, et al. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm[J]. Composite Structures, 2005, 67 (4): 443-453. doi: 10.1016/j.compstruct.2004.02.003
    [5] 舒明杰, 李云仲, 刘翀. 复合材料压力容器自紧后残余变形研究及有限元分析[J]. 玻璃钢/复合材料, 2017(9): 73-77.

    SHU Mingjie, LI Yunzhong, LIU Chong. Residual deformation of composite pressure vessels after autofrettage and its finite element analysis[J]. Composites Science and Engineering, 2017(9): 73-77. (in Chinese)
    [6] 王欢, 余珊, 王特. 钛合金内衬碳纤维缠绕气瓶水压后轴向缩短分析[J]. 玻璃钢/复合材料, 2018(6): 34-38.

    WANG Huan, YU San, WANG Te. Axial shortening analysis of carbon filament-wound pressure cylinder with titanium alloy liner after hydrostatic test[J]. Composites Science and Engineering, 2018(6): 34-38. (in Chinese)
    [7] 王荣国, 赫晓东, 胡照会, 等. 超薄金属内衬复合材料压力容器的结构分析[J]. 复合材料学报, 2020(4): 131-138.

    WANG Rongguo, HE Xiaodong, HU Zhaohui, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica, 2020(4): 131-138. (in Chinese)
    [8] MESSAGER T, PYRZ M, GINESTEC B, et al. Optimal laminations of thin underwater composite cylindrical vessels[J]. Composite Structures, 2002, 58 (4): 529-537.
    [9] 气瓶水压方法: GB/T 9251—2011[S]. 北京: 中国标准出版社, 2011.

    Method for hydrostatic test of gas cylinders: GB/T 9251—2011[S]. Beijing: Standards Press of China, 2011. (in Chinese)
    [10] 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.

    Metallic materials, tensile testing, part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [11] 吴世俊. 固体火箭发动机壳体不同开口比封头补强优化研究[D]. 合肥: 合肥工业大学, 2023.

    WU Shijun. Optimization research on head reinforcement with different opening ratios of solid rocket motor casing[D]. Hefei: Hefei University of Technology, 2023. (in Chinese)
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  43
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-28
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回