留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流-固耦合作用下小尺寸肾结石引发的输尿管疼痛响应

刘勇岗 苏丽君

刘勇岗, 苏丽君. 流-固耦合作用下小尺寸肾结石引发的输尿管疼痛响应[J]. 应用数学和力学, 2024, 45(6): 735-752. doi: 10.21656/1000-0887.450095
引用本文: 刘勇岗, 苏丽君. 流-固耦合作用下小尺寸肾结石引发的输尿管疼痛响应[J]. 应用数学和力学, 2024, 45(6): 735-752. doi: 10.21656/1000-0887.450095
LIU Yonggang, SU Lijun. Responses of Ureteral Pain Caused by Small-Sized Kidney Stones Under Fluid-Structure Coupling[J]. Applied Mathematics and Mechanics, 2024, 45(6): 735-752. doi: 10.21656/1000-0887.450095
Citation: LIU Yonggang, SU Lijun. Responses of Ureteral Pain Caused by Small-Sized Kidney Stones Under Fluid-Structure Coupling[J]. Applied Mathematics and Mechanics, 2024, 45(6): 735-752. doi: 10.21656/1000-0887.450095

流-固耦合作用下小尺寸肾结石引发的输尿管疼痛响应

doi: 10.21656/1000-0887.450095
基金项目: 

国家自然科学基金(重点项目) 12032010

详细信息
    通讯作者:

    刘勇岗(1991—),男,讲师,博士(通讯作者. E-mail: lyg@yau.edu.cn)

  • 中图分类号: O347

Responses of Ureteral Pain Caused by Small-Sized Kidney Stones Under Fluid-Structure Coupling

  • 摘要:

    肾结石引发的输尿管疼痛长期折磨着人类,严重影响着人们的生活质量. 然而,目前临床上由于缺乏肾结石与输尿管相互作用的定量分析,泌尿医师无法针对不同患者制定精准的个性化治疗及镇痛方案. 针对该问题,以小尺寸肾结石为例,基于耦合Euler-Lagrange(CEL)算法的流-固耦合有限元方法分析了进入输尿管管腔内的小尺寸肾结石与输尿管的相互作用规律,并基于已建立的输尿管疼痛模型,对由输尿管内小尺寸肾结石引发的输尿管疼痛进行了定量化研究. 有限元分析结果表明,当结石直径小于输尿管内径时,结石会在输尿管壁蠕动作用下与输尿管发生动态接触,造成输尿管内壁上出现动态应力. 随着输尿管壁蠕动幅度增大,结石的移动速度增大,且结石与输尿管接触的概率减小,同时输尿管壁上的接触应力也会降低. 将应力结果输入输尿管疼痛模型计算对应的中心传输神经元细胞膜电位,结果表明,疼痛水平随时间的变化与动态应力随时间的变化趋势类似,在应力交替变化的情况下,疼痛程度并不会随应力降为零应力而降低至疼痛阈值以下,表现出疼痛程度与应力水平不对等的特征. 该研究所得结果可以结合当前临床上已有的医学影像技术和计算机领域的大数据与人工智能等技术,有望为个性化精准诊断结石患者病况并定量化评估患者疼痛程度,从而制定个性化治疗方案的精准医疗临床策略提供理论基础.

  • 图  1  人体泌尿系统

    Figure  1.  The human urinary system

    图  2  输尿管解剖结构(横截面)[7]

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The anatomical structure of the ureter (cross-section)[7]

    图  3  输尿管壁的解剖结构及机械力刺激引起的痛觉信号传递

    Figure  3.  The anatomical structure of the ureteral wall and the pain signal transmission caused by mechanical stimulation

    图  4  疼痛统一模型示意图

    Figure  4.  Schematic diagram of the holistic pain model

    图  5  基于疼痛统一模型的输尿管疼痛量化模型

    Figure  5.  The quantitative model for the ureteral pain based on the holistic pain model

    图  6  输尿管中不同尺寸肾结石示意图

    Figure  6.  Schematic diagram of kidney stones with different sizes in the ureter lumen

    图  7  结石与输尿管三维CEL有限元建模

    Figure  7.  The 3D CEL finite element modeling of stones and ureters

    图  8  结石与输尿管三维CEL有限元模型

    Figure  8.  The 3D CEL finite element model for stones and ureters

    图  9  蠕动状态下输尿管管壁上间距为Δz的两质点的运动状态示意

    Figure  9.  The schematic of the motion state of 2 mass points with distance Δz in the ureter wall under the peristaltic state

    图  10  三维CEL模型输尿管壁结点位移载荷施加

    Figure  10.  Application of node displacement loads for the 3D CEL model of ureteral wall

    图  11  输尿管管壁蠕动振幅比φ=0.2时结石运动的位移-时间曲线

    Figure  11.  The displacement-time curve of kidney stone movement under φ=0.2

    图  12  输尿管管壁蠕动振幅比φ=0.2时,结石与管壁接触引起的管壁应力状态变化

    Figure  12.  The changes in stresss states of the ureter wall caused by the contact between the stone and the ureter wall under dimensionless peristaltic amplitude of ureteral wall φ=0.2

    图  13  输尿管管壁蠕动振幅比φ=0.4时,对应的结石的位移-时间曲线与管壁接触面上最大主应力云图

    Figure  13.  The curve of the kidney stone displacement vs. the time and the maximum principal stress distribution on the contact surface of the ureter wall under the dimensionless peristaltic amplitude of ureteral wall φ=0.4

    图  14  输尿管管壁蠕动振幅比φ=0.6时对应的结石在管腔中的相对位置与结石运动的位移-时间曲线

    Figure  14.  The kidney stone location in the ureter lumen and the curve of the kidney stone displacement vs. the time under the dimensionless peristaltic amplitude of ureteral wall φ=0.6

    图  15  小尺寸结石引发输尿管疼痛响应的量化计算

    Figure  15.  Quantitative calculations of ureteral pain responses caused by small-sized stones

    表  1  尿液介质本构材料参数

    Table  1.   Constitutive parameters of the urinary liquid

    quantity value
    dynamic viscosity μ/(MPa·s) 10-5
    initial density ρf0/(t/mm3) 10-9
    sound speed in urinary liquid cf0/(mm/s) 1.5×106[31]
    material constant Γ0 0[32]
    material constant s 0[32]
    下载: 导出CSV

    表  2  人类输尿管的4参数Fung超弹性模型本构参数[34]

    Table  2.   Constitutive parameters of the 4-parameter Fung hyperelastic model for human ureter[34]

    parameter C/MPa Aθθθθ Azzzz Aθθzz
    value 0.405 6 0.709 1 0.185 6 0.889 2
    下载: 导出CSV

    表  3  三维CEL模型输尿管黏弹性部分的Prony级数参数

    Table  3.   Prony parameters of the viscoelastic part of the ureter in the 3D CEL model

    number of terms i gi ki τi/s
    1 0.28 0 5.63
    2 0.20 0 69.65
    下载: 导出CSV

    表  4  三维CEL模型的基准参数

    Table  4.   Datum parameters of the 3D CEL model

    parameter value
    inner radius of ureter Rin/mm 20
    outer radius of ureter Rout/mm 36
    amplitude of peristaltic wave Aw/mm 4
    wavelength of peristaltic wave λ/mm 200
    wave speed of peristaltic wave c/(mm/s) 200
    kinematic viscosity of urinary liquid ν/(mm2/s) 400
    density of urinary liquid ρl/(t/mm3) 10-9
    radius of kidney stone Rs/mm 20
    density of kidney stone ρs/(t/mm3) 2×10-9
    下载: 导出CSV

    表  5  三维CEL模型的基准无量纲参数

    Table  5.   Datum dimensionless parameters for the 3D CEL models

    parameter value
    dimensionless size of kidney stone ξ 1.0
    Reynolds number Re 1.0
    dimensionless thickness of ureter wall η 1.8
    dimensionless peristaltic amplitude of ureter wall φ 0.2
    peristaltic wave number of ureter wall β 0.1
    dimensionless density of kidney stone ψ 2.0
    下载: 导出CSV
  • [1] REIMER R P, SALEM J, MERKT M, et al. Size and volume of kidney stones in computed tomography: influence of acquisition techniques and image reconstruction parameters[J]. European Journal of Radiology, 2020, 132: 109267. doi: 10.1016/j.ejrad.2020.109267
    [2] 陈志永, 陈猛, 范建华, 等. 肾绞痛首次发作后不同时间段碎石治疗输尿管中下段结石临床对比研究[J]. 微创泌尿外科杂志, 2018, 33(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WCMN201802010.htm

    CHEN Zhiyong, CHEN Meng, FAN Jianhua, et al. Clinically comparative study of different time range after first episode of renal colic by ureterscopic lithotripsy in the treatment of ureteral calculus[J]. Journal of Milimally Invasave Urology, 2018, 33(2): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WCMN201802010.htm
    [3] 高新梅, 戚微岩, 徐寒梅. 肾结石形成机制及治疗方法研究进展[J]. 药物生物技术, 2019, 26(6): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201906021.htm

    GAO Xinmei, QI Weiyan, XU Hanmei. Research progress on the formation mechanism and treatment of kidney calculi's disease[J]. Pharmaceutical Biotechnology, 2019, 26(6): 4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201906021.htm
    [4] KHAN S R, PEARLE M S, ROBERTSON W G, et al. Kidney stones[J]. Nature Reviews Disease Primers, 2016, 2: 16008. doi: 10.1038/nrdp.2016.8
    [5] TÜRK C, PETŘÍK A, SARICA K, et al. EAU guidelines on diagnosis and conservative management of urolithiasis[J]. European Urology, 2016, 69(3): 468-474. doi: 10.1016/j.eururo.2015.07.040
    [6] PREMINGER G M, TISELIUS H G, ASSIMOS D G, et al. 2007 guideline for the management of ureteral calculi[J]. The Journal of Urology, 2007, 178(6): 2418-2434. doi: 10.1016/j.juro.2007.09.107
    [7] FRÖBER R. Surgical anatomy of the ureter[J]. BJU International, 2007, 100(4): 949-965. doi: 10.1111/j.1464-410X.2007.07207.x
    [8] NAJAFI Z, GAUTAM P, SCHWARTZ B F, et al. Three-dimensional numerical simulations of peristaltic contractions in obstructed ureter flows[J]. Journal of Biomechanical Engineering, 2016, 138(10): 101002. doi: 10.1115/1.4034307
    [9] CONNINGTON K, KANG Q, VISWANATHAN H, et al. Peristaltic particle transport using the lattice Boltzmann method[J]. Physics of Fluids, 2009, 21(5): 053301. doi: 10.1063/1.3111782
    [10] CHRISPELL J, FAUCI L. Peristaltic pumping of solid particles immersed in a viscoelastic fluid[J]. American Physical Society, 2011, 6(5): 67-83.
    [11] ASHTARI O, POURJAFAR M, GHARALI K, et al. Peristaltic transport of elliptic particles: a numerical study[J]. Physics of Fluids, 2022, 34(2): 1-16.
    [12] TAKADDUS A T, GAUTAM P, CHANDY A J. A fluid-structure interaction (FSI)-based numerical investigation of peristalsis in an obstructed human ureter[J]. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34(9): e3104. doi: 10.1002/cnm.3104
    [13] TASNUB T A, CHANDY A J. A three-dimensional (3D) two-way coupled fluid-structure interaction (FSI) study of peristaltic flow in obstructed ureters[J]. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34(10): e332.
    [14] NAJAFI Z, GAUTAM P, SCHWARTZ B F, et al. Three-dimensional numerical simulations of peristaltic contractions in obstructed ureter flows[J]. Journal of Biomechanical Engineering, 2016, 138(10): 1-7.
    [15] NEMETH L, O'BRIAIN D S, PURI P. Demonstration of neuronal networks in the human upper urinary tract using confocal laser scanning microscopy[J]. The Journal of Urology, 2001, 166(1): 255-258. doi: 10.1016/S0022-5347(05)66140-X
    [16] CALVERT R C, THOMPSON C S, BURNSTOCK G. ATP release from the human ureter on distension and P2X3 receptor expression on suburothelial sensory nerves[J]. Purinergic Signalling, 2008, 4(4): 377-381. doi: 10.1007/s11302-008-9123-1
    [17] CANDA A E, TURNA B, CINAR G M, et al. Physiology and pharmacology of the human ureter: basis for current and future treatments[J]. Urologia Internationalis, 2007, 78(4): 289-298. doi: 10.1159/000100830
    [18] KNIGHT G E, BODIN P, DE GROAT W C, et al. ATP is released from guinea pig ureter epithelium on distension[J]. American Journal of Physiology-Renal Physiology, 2002, 282(2): F281-F288. doi: 10.1152/ajprenal.00293.2000
    [19] YIN Y, LI M, LI Y, et al. Skin pain sensation of epidermal electronic device/skin system considering non-Fourier heat conduction[J]. Journal of the Mechanics and Physics of Solids, 2020, 138: 103927. doi: 10.1016/j.jmps.2020.103927
    [20] LIU Y, LIU S, LI M, et al. Quantification of ureteral pain sensation induced by kidney stone[J]. Journal of Applied Mechanics, 2023, 90(8): 081003. doi: 10.1115/1.4062222
    [21] XU F, LU T J, SEFFEN K A. Skin thermal pain modeling: a holistic method[J]. Journal of Thermal Biology, 2008, 33(4): 223-237. doi: 10.1016/j.jtherbio.2008.01.004
    [22] CONNINGTON K, KANG Q, VISWANATHAN H, et al. Peristaltic particle transport using the lattice Boltzmann method[J]. Physics of Fluids, 2009, 21(5): 053301. doi: 10.1063/1.3111782
    [23] ASHTARI O, POURJAFAR-CHELIKDANI M, GHARALI K, et al. Peristaltic transport of elliptic particles: a numerical study[J]. Physics of Fluids, 2022, 34(2): 023314. doi: 10.1063/5.0080870
    [24] SOKOLIS D P, PETSEPE D C, PAPADODIMA S A, et al. Age- and region-related changes in the biomechanical properties and composition of the human ureter[J]. Journal of Biomechanics, 2017, 51: 57-64. doi: 10.1016/j.jbiomech.2016.11.067
    [25] 孙西钊. 冲击波碎石技术[M]. 上海: 上海交通大学出版社, 2001.

    SUI Xizhao. Shock Wave Lithotripsy[M]. Shanghai: Shanghai Jiao Tong University Press, 2001. (in Chinese)
    [26] 王奇, 朱寅鑫, 牛培行, 等. 柔性扑翼翼型的气动性能仿真分析[J]. 应用数学和力学, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155?viewType=HTML

    WANG Qi, ZHU Yinxin, NIU Peixing, et al. Simulation of aerodynamic performances of flexible flapping wing airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. (in Chinese) doi: 10.21656/1000-0887.430155?viewType=HTML
    [27] 祁文超, 王琼瑶, 平凯, 等. 弹性膜对部分充液罐车内液体晃动的抑制效果研究[J]. 应用数学和力学, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271?viewType=HTML

    QI Wenchao, WANG Qiongyao, PING Kai, et al. Study of inhibitory effects of elastic membranes on liquid sloshing in partially filled tank vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. (in Chinese) doi: 10.21656/1000-0887.440271?viewType=HTML
    [28] 周东荣, 张家铭, 庄欠伟, 等. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2023S1009.htm

    ZHOU Dongrong, ZHANG Jiaming, ZHUANG Qianwei, et al. CEL numerical analysis of disturbance of constructing curved beam based on"Yangtze River Estuary Ⅱ" ancient wreck[J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 60-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT2023S1009.htm
    [29] HUNG T K, BROWN T D. Solid-particle motion in two-dimensional peristaltic flows[J]. Journal of Fluid Mechanics, 1976, 73(1): 77-96. doi: 10.1017/S0022112076001262
    [30] FUNG Y C, YIH C S. Peristaltic transport[J]. Journal of Applied Mechanics, 1968, 35(4): 669-675. doi: 10.1115/1.3601290
    [31] HSU C Y, LIANG C C, TENG T L, et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering, 2013, 72: 98-106. doi: 10.1016/j.oceaneng.2013.06.012
    [32] PARK Y I L, PARK S H, KIM J H. Numerical investigation of plastic deformation of flat plate for slamming impact by coupled Eulerian-Lagrangian method[J]. Applied Sciences, 2022, 12(14): 1-15.
    [33] LIU Y, LI M, QIANG L, et al. Critical size of kidney stone through ureter: a mechanical analysis[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 135: 105432. doi: 10.1016/j.jmbbm.2022.105432
    [34] RASSOLI A, SHAFIGH M, SEDDIGHI A, et al. Biaxial mechanical properties of human ureter under tension[J]. Urology Journal, 2014, 11(3): 1678-1686.
    [35] SMITA K, KUMAR V S, PREMENDRAN J, et al. Goat ureter-an alternative model for measuring ureteral peristalsis[J]. Journal of Smooth Muscle Research, 2006, 42(4): 117-130. doi: 10.1540/jsmr.42.117
    [36] MAST T D. Empirical relationships between acoustic parameters in human soft tissues[J]. Acoustics Research Letters Online, 2000, 1(2): 37-42. doi: 10.1121/1.1336896
    [37] SHAPIRO A H, JAFFRIN M Y, WEINBERG S L. Peristaltic pumping with long wavelengths at low Reynolds number[J]. Journal of Fluid Mechanics, 1969, 37(4): 799-825. doi: 10.1017/S0022112069000899
    [38] LOZANO J. Peristaltic flow with application to ureteral biomechanics[D]. Indiana: University of Notre Dame, 2009.
    [39] KENI L G, HAYOZ M J, SHENOY S, et al. Ureterdynamic analysis of multiple peristaltic waves on variable diameter ureter[J]. Engineered Science, 2021, 17: 256-265.
    [40] KIM K W, CHOI Y H, LEE S B, et al. Analysis of urine flow in three different ureter models[J]. Computational and Mathematical Methods in Medicine, 2017, 2017: 5172641.
    [41] FUNG Y C B. Peristaltic Pumping: a Bioengineering Model[M]. Elsevier, 1971.
    [42] 杨嗣星, 叶章群. 上尿路结石排石治疗理念的革新: 由被动排石变主动排石[J]. 中华泌尿外科杂志, 2017, 38(9): 4.

    YANG Sixing, YE Zhangqun. Innovation of upper urinary tract stone treatment: from passive to active[J]. Chinese Journal of Urology, 2017, 38(9): 4. (in Chinese)
    [43] HOSSEINI G, JI C, XU D, et al. A computational model of ureteral peristalsis and an investigation into ureteral reflux[J]. Biomedical Engineering Letters, 2018, 8: 117-125. doi: 10.1007/s13534-017-0053-0
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  52
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-28
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回