Load-Bearing and Multi-Point Ballistic Performances of Hybrid Sandwich Meta-Structures
-
摘要: 轻巧、可承载、抗侵彻一体化超结构相较于传统承载结构与披挂装甲,可有效减轻质量并提高空间利用率,在军事装备与国防设施中具有广阔的应用前景. 该文基于陶瓷混杂点阵夹芯超结构,对比了超结构与传统波纹结构在三点弯曲载荷下的承载-位移曲线,并通过实验研究了超结构在多点弹道冲击下的防护性能与抗侵彻机理. 研究结果表明,陶瓷混杂点阵夹芯超结构在弯曲载荷下主要发生陶瓷脆性断裂、面板塑性断裂与胶层开裂等失效,其承载能力高于传统波纹结构. 此外,该文还发现冲击位置与芯体类型影响超结构的抗多发特性,陶瓷混杂蜂窝芯体超结构的抗多发性能优于陶瓷混杂波纹芯体超结构. 波纹结构在纵向对陶瓷缺乏约束,而蜂窝芯体对陶瓷的约束作用更强,从而可限制陶瓷损伤面积,使得抗侵彻性能随着冲击次数的增多而基本保持一致.Abstract: Lightweight, load-bearing, and penetration-resistant integrated meta-structures have significant potential in military equipment and defense facilities, as they can effectively reduce weight and improve space utilization compared to traditional load-bearing structures and armors. Based on hybrid sandwich meta-structures, the load-deflection curves of the meta-structure and the traditional corrugated sandwich under 3-point bending loads were compared. The protective performance and energy absorption mechanism of the meta-structure under multiple ballistic impacts were experimentally studied. The research results indicate that, the hybrid sandwich meta-structure mainly experiences brittle fracture of ceramic, plastic fracture of face-sheets, and debonding of the adhesive layer under bending loads. Its load-bearing capacity is higher than those of traditional corrugated sandwiches. Furthermore, the study also reveals that the impact location and the lattice core type influence the multi-impact resistance of the meta-structure, with the honeycomb core demonstrating superior multi-impact resistance compared to the corrugated core. The corrugated sandwich lacks longitudinal constraints on the ceramic, while the honeycomb core provides stronger constraints on the ceramic, limiting the area of ceramic damage. As a result, the penetration-resistant performance remains relatively consistent as the number of impacts increases.
-
Key words:
- meta-structure /
- load-bearing /
- ballistic performance /
- hybrid
edited-byedited-by1) (我刊青年编委倪长也来稿) -
表 1 三点弯曲实验样件
Table 1. Samples for 3-point bending
number structure weight m/g areal density ρa/(kg·m-2) T-E-1
T-E-2
T-E-3corrugated sandwich 91
88
889.81
9.49
9.49L-E-1
L-E-2
L-E-3corrugated sandwich 88
88
889.49
9.49
9.49T-C-1
T-C-2
T-C-3meta-structure sandwich 222
215
21523.95
23.20
23.20L-C-1
L-C-2
L-C-3meta-structure sandwich 221
224
21723.84
24.17
23.41表 2 靶板的配置
Table 2. Configurations of target plates
target thickness of the front sheet tf/mm thickness of the back sheet tb/mm areal density ρa/(kg·m-2) A 1 2 59 B 1 3.3 69.2 表 3 弹道实验结果
Table 3. Experimental results
target No. Vi/(m·s-1) impact location experiment N/P w/mm D/mm A 1 827 base N 15.2 100 2 825 side P - - B 1 824 base N 10.8 102 2 829 base N 9.5 115 3 821 base N 10.5 113 4 830 side P - - 表 4 弹道实验结果
Table 4. Experimental results
impactlocation No. Vi/(m·s-1) N/P center 1 412 P center 2 402 P center 3 403 P node 1 385 N node 2 390 N node 3 388 N -
[1] 邓通相, 匡格平, 胡兆财, 等. 多再入工况下一体化热防护系统拓扑优化设计[J]. 应用数学和力学, 2023, 44(11): 1299-1310. doi: 10.21656/1000-0887.440163DENG Tongxiang, KUANG Geping, HU Zhaocai, et al. Topology optimizations of integrated thermal protection systems in multiple reentry load cases[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1299-1310. (in Chinese) doi: 10.21656/1000-0887.440163 [2] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14.LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) [3] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese) doi: 10.21656/1000-0887.440004 [4] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion and Shock Waves, 2021, 41(11): 113301. (in Chinese) doi: 10.11883/bzycj-2021-0134 [5] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462BAO Kuo, ZHANG Xianfeng, TAN Mengting, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion and Shock Waves, 2019, 39(12): 123102. (in Chinese) doi: 10.11883/bzycj-2018-0462 [6] GIBSON L J, ASHBY M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997. [7] EVANS A G, HUTCHINSON J W, ASHBY M F. Multi functionality of cellular metal systems[J]. Progress in Materials Science, 1998, 43(3): 171-221. doi: 10.1016/S0079-6425(98)00004-8 [8] XIN F X, LU T J. Sound radiation of orthogonality rib-stiffened sandwich structures with cavity absorption[J]. Composites Science & Technology, 2010, 70(15): 2198-2206. [9] DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. doi: 10.1016/j.ijimpeng.2007.06.008 [10] XUE Z, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-305. doi: 10.1016/j.ijimpeng.2003.08.007 [11] YUNGWIRTH C J, WADLEY H N G, O'CONNOR J H, et al. Impact response of sandwich plates with a pyramidal lattice core[J]. International Journal of Impact Engineering, 2008, 35(8): 920-936. doi: 10.1016/j.ijimpeng.2007.07.001 [12] YUNGWIRTH C J, RADFORD D D, ARONSON M, et al. Experiment assessment of the ballistic response of composite pyramidal lattice truss structures[J]. Composites (Part B): Engineering, 2008, 39(3): 556-569. doi: 10.1016/j.compositesb.2007.02.029 [13] WADLEY H N G, DHARMASENA K P, O'MASTA M R, et al. Impact response of aluminum corrugated core sandwich panels[J]. International Journal of Impact Engineering, 2013, 62: 114-128. doi: 10.1016/j.ijimpeng.2013.06.005 [14] WADLEY H N G, O'MASTA M R, DHARMASENA K P, et al. Effect of core topology on projectile penetration in hybrid aluminum/alumina sandwich structures[J]. International Journal of Impact Engineering, 201, 62: 99-113. [15] NI C Y, LI Y C, XIN F X, et al. Ballistic resistance of hybrid-cored sandwich plates: numerical and experimental assessment[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46: 69-79. doi: 10.1016/j.compositesa.2012.07.019