[1] |
吴伟仁, 于登云, 刘继忠, 等. 我国太空活动现代化治理中的若干重大问题[J]. 科学通报, 2021, 66(15): 1795-1801.WU Weiren, YU Dengyun, LIU Jizhong, et al. Key issues of modernization of space governance[J]. Science China Press, 2021, 66(15): 1795-1801. (in Chinese)
|
[2] |
龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13.GONG Zizheng, ZHAO Qiuyan, LI Ming, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13. (in Chinese)
|
[3] |
汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317-323.TANG Jingshi, CHENG Haowen. The origin, status and future of space debris[J]. Physics, 2021, 50(5): 317-323. (in Chinese)
|
[4] |
黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51.HUANG Yizhou, WANG Zhijin, LIU Gefei. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi'an Aeronautical University, 2021, 39(5): 44-51. (in Chinese)
|
[5] |
江洪, 彭导琦. 先进复合材料在航天航空器中的应用[J]. 新材料产业, 2022(1): 2-7.JIANG Hong, PENG Daoqi. Application of advanced composition materials in aerospace[J]. Advanced Materials Industry, 2022(1): 2-7. (in Chinese)
|
[6] |
李玉峰, 李玲丽, 潘宗友. 一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J]. 宇航学报, 2014, 35(11): 1318-1325.LI Yufeng, LI Lingli, PAN Zongyou. Characteristic study on titanium-liner/carbon-fiber overwrapped vessels on the satellite[J]. Journal of Astronautics, 2014, 35(11): 1318-1325. (in Chinese)
|
[7] |
郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683.ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. (in Chinese)
|
[8] |
刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展[J]. 复合材料科学与工程, 2022(1): 117-128.LIU Xiaojun, ZHAN Li, ZOU Ailing, et al. Research progress on interlaminar toughening technology of fiber reinforced composites[J]. Journal Composites Science and Engineering, 2022(1): 117-128. (in Chinese)
|
[9] |
GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008.
|
[10] |
YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844.
|
[11] |
HUANG W, SHISHEHBOR M, GUARÍN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials, 2020, 19: 1236-1243.
|
[12] |
GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials, 2018, 30(9): 1705295.
|
[13] |
FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus[J]. Advanced Materials, 2009, 21(4): 391-400.
|
[14] |
RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia, 2005, 53(15): 4281-4292.
|
[15] |
CHENG L, WANG L, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research, 2008, 23(11): 2854-2872.
|
[16] |
BOßELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta, 2007, 463(1/2): 65-68.
|
[17] |
CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596.
|
[18] |
YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
|
[19] |
ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4(1): 1-7.
|
[20] |
CHENG L, WANG L, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24: 3253-3267.
|
[21] |
RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth, 2005, 283(1/2): 1-7.
|
[22] |
CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering A, 2006, 423(1/2): 237-242.
|
[23] |
BOULIGAND Y. Sur une architecture torsade répandue dans de nombreuses cuticules d'Arthropodes[J]. CR Acad Sci, 1965, 261: 3665-3668.
|
[24] |
WANG M, LI L, NIU S C, et al. Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage[J]. Journal of Materials Research and Technology, 2022, 21: 3169-3180.
|
[25] |
LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289.
|
[26] |
LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites (Part A): Applied Science and Manufacturing, 2019, 127: 105625.
|
[27] |
LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics, 2020, 87(3): 031007.
|
[28] |
LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106.
|
[29] |
LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction[J]. International Journal of Impact Engineering, 2022, 169: 104320.
|
[30] |
YIN S, CHEN H, YANG R, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science, 2020, 1(7): 100109.
|
[31] |
YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650.
|
[32] |
王欢, 欧阳文婷, 彭华新, 等. 一种仿生复合材料螺旋铺层设计方法: CN110962364B[P]. 2021-03-26.WANG Huan, OUYANG Wenting, PENG Huaxin, et al. A design method for spiral layering of biomimetic composite materials: CN110962364B[P]. 2021-03-26. (in Chinese)
|