留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PINN方法的KdV类方程新孤子解的研究

邱天威 魏光美 宋禹欣 王振

邱天威, 魏光美, 宋禹欣, 王振. 基于PINN方法的KdV类方程新孤子解的研究[J]. 应用数学和力学, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
引用本文: 邱天威, 魏光美, 宋禹欣, 王振. 基于PINN方法的KdV类方程新孤子解的研究[J]. 应用数学和力学, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
Citation: QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122

基于PINN方法的KdV类方程新孤子解的研究

doi: 10.21656/1000-0887.450122
基金项目: 

国家自然科学基金(面上项目)(52171251)

详细信息
    作者简介:

    邱天威(2002—),男,硕士生(E-mail: qiutw2002@163.com);魏光美(1967—),女,副教授,博士,硕士生导师(通讯作者. E-mail: gmwei@buaa.edu.cn);王振(1981—),男,教授,博士,博士生导师(E-mail: wangzmath@163.com).

    通讯作者:

    魏光美(1967—),女,副教授,博士,硕士生导师(通讯作者. E-mail: gmwei@buaa.edu.cn).

  • 中图分类号: O241

Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks

Funds: 

The National Science Foundation of China(52171251)

  • 摘要: 该文采用物理信息神经网络(physicsinformed neural network,PINN)方法结合广义Miura变换,深入研究了三个KdV类方程,获得了一系列新的孤子解.具体而言,研究成果包括:基于改进的PINN方法,获得了mKdV方程的扭结钟形解的解析形式;通过Miura变换,发现了KdV方程的新单孤子解;结合广义Miura变换与PINN方法,预测出非线性较强的KdV类方程的暗孤子解.通过将PINN方法的数值结果与理论分析结果进行对比可以得知,基于广义Miura变换的PINN方法是发现偏微分方程新数值解的有效途径,同时对理论研究具有重要的启示意义.
  • 郭柏灵. 非线性演化方程[M]. 上海: 上海科技教育出版社, 1995. (GUO Boling.Nonlinear Evolution Equations[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. (in Chinese))
    [2]陈登远. 孤子引论[M]. 北京: 科学出版社, 2006. (CHEN Dengyuan.Introduction to Solitons[M]. Beijing: Science Press, 2006. (in Chinese))
    [3]王明亮. 非线性发展方程与孤立子[M]. 兰州: 兰州大学出版社, 1990. (WANG Mingliang.Nonlinear Evolution Equations and Solitons[M]. Lanzhou: Lanzhou University Press, 1990. (in Chinese))
    [4]GUO Y, PU X. KdV limit of the Euler-Poisson system[J]. Archive for Rational Mechanics and Analysis,2014,211(2): 673-710.
    [5]RONG R, PENG Y. KdV-type equation limit for ion dynamics system[J]. Communications on Pure and Applied Analysis,2021,20(4): 1699-1719.
    [6]范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998,47(3): 353-362. (FAN Engui, ZHANG Hongqing. The homogeneous balance method for solving nonlinear soliton equations[J]. Acta Physica Sinica,1998,47(3): 353-362. (in Chinese))
    [7]WEISS J. The painlevé property for partial differential equations Ⅱ: Bucklund transformation, Lax pairs, and the Schwarzian derivative[J].Journal of Mathematical Physics,1983,24(6): 1405-1413.
    [8]YANG J.Nonlinear Waves in Integrable and Nonintegrable Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2010.
    [9]ROGERS C, SCHIEF W K.Bcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory[M]. New York: Cambridge University Press, 2002.
    [10]HIROTA R. Exact solution of the korteweg-de vries equation for multiple collisions of solitons[J]. Physical Review Letters,1971,27(18): 1192-1194.
    [11]BLUMAN G W, CHEVIAKOV A F.Applications of Symmetry Methods to Partial Differential Equations[M]. New York: Springer, 2010.
    [12]MATVEEV V B, SALL’ M A. Scattering of solitons in the formalism of the Darboux transform[J].Journal of Soviet Mathematics,1986,34(5): 1983-1987.
    [13]MIURA R M. Korteweg-de Vries equation and generalizations Ⅰ: a remarkable explicit nonlinear transformation[J]. Journal of Mathematical Physics,1968,9(8): 1202-1204.
    [14]RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics,2019,378: 686-707.
    [15]CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing,2022,92(3): 88.
    [16]LIN S, CHEN Y. Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions[J]. Physica D: Nonlinear Phenomena,2023,445: 133629.
    [17]石玉仁, 张娟, 杨红娟, 等. mKdV方程的双扭结单孤子及其稳定性研究[J]. 物理学报, 2010,59(11): 7564-7569. (SHI Yuren, ZHANG Juan, YANG Hongjuan, et al. Single soliton of double kinks of the mKdV equation and its stability[J]. Acta Physica Sinica,2010,59(11): 7564-7569. (in Chinese))
    [18]徐传友. 非线性偏微分方程之间的Miura变换和精确解[J]. 阜阳师范学院学报(自然科学版), 2008,25(3): 1-4. (XU Chuanyou. The miura transformation between nonlinear partial differential equations and it’s exact solutions[J]. Journal of Fuyang Teachers College (Natural Science), 2008,25(3): 1-4. (in Chinese))
    [19]FOKAS A S. A symmetry approach to exactly solvable evolution equations[J].Journal of Mathematical Physics,1980,21(6):1318-1325.
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-04

目录

    /

    返回文章
    返回