Analysis of Turbulent Vibration Responses of Wire-Wrapped Fuel Rods in Lead-Bismuth Fluids
-
摘要: 液态金属铅铋的密度与黏度均远大于水,在反应堆中引起的燃料组件流致振动及磨损问题不可忽视. 该文采用计算流体力学与有限元结构动力分析相结合的流固耦合分析方式,利用空间周期性与时间周期性,提出了绕丝燃料棒湍流振动响应的快速分析方法. 利用绕丝燃料棒的空间周期结构建立单跨流场模型,基于CFD分析获得了铅铋环境流体激励载荷;利用湍流激励力功率谱密度的频域信息,开发等效时程扩展技术获得了用于振动分析的长时程载荷;考虑绕丝燃料棒间的非线性接触碰撞,建立有限元分析模型开展了振动响应分析. 结果表明,轴向流动的液态铅铋会引起绕丝燃料棒的湍流抖振,最大振幅约为3.83 μm,满足工程设计要求.Abstract: The density and viscosity of liquid lead-bismuth metal are much larger than those of water, which causes nonnegligible flow induced vibration (FIV) and wear problems of fuel assemblies in the reactor. With the fluid-structure coupled analysis method combining the CFD and the FEM, a rapid analysis method for the turbulent vibration responses of wire-wrapped fuel rods was proposed in view of the spatial periodicity and time periodicity. For the space periodic structure of wire-wrapped fuel rods, a single-span flow field model was established, and the lead-bismuth environment fluid excitation load was obtained based on the CFD analysis. From the frequency domain information of the turbulent excitation force PSD, the equivalent time history extrapolation technique was developed to obtain long-duration loads for vibration analysis. With the nonlinear contact between the wire-wrapped fuel rods considered, an FEM model was established to carry out the vibration analysis. The results show that, the axial flow of liquid lead-bismuth causes turbulent vibrations of fuel rods, with a maximum amplitude of 3.83 μm, which meets the engineering design requirement.
-
表 1 网格无关性验证结果
Table 1. Grid independence verification results
grid base size/mm 2.0 1.2 0.8 0.6 number of grids/104 356 684 1 111 1 404 average wall shear stress/Pa 43.49 41.97 41.27 41.25 表 2 流体力载荷统计值
Table 2. Fluid force statistical values
segment number average pulsation amplitude Fx/N Fy/N Fz/N Fx/N Fy/N Fz/N S1 -0.045 9 0.009 5 -0.030 5 0.008 3 0.007 4 0.001 2 S2 -0.031 3 0.016 7 -0.030 5 0.005 7 0.009 6 0.001 3 S3 -0.074 3 0.005 3 -0.030 2 0.011 6 0.008 0 0.001 3 S4 -0.084 3 -0.083 6 -0.030 5 0.010 3 0.007 6 0.001 3 S5 0.057 8 -0.147 2 -0.030 5 0.008 3 0.010 3 0.001 5 S6 0.176 7 -0.101 6 -0.030 0 0.012 2 0.010 7 0.001 1 表 3 不同边界条件下燃料棒模态频率(单位: Hz)
Table 3. Modal frequencies of fuel rods under different BCs(unit: Hz)
frequency order fixed+weak constraint fixed+free with clearance no clearance with clearance no clearance 1 1.05 223.68 1.05 141.87 2 6.17 271.31 1.05 146.77 3 6.33 373.81 6.17 223.68 4 17.28 452.42 6.17 375.32 5 17.79 475.44 17.28 416.22 6 34.02 509.00 17.28 452.42 7 35.19 545.43 34.02 475.45 8 55.76 555.17 34.02 509.02 9 57.67 577.11 55.76 545.49 10 83.13 612.65 55.76 577.09 表 4 各计算情况Rayleigh阻尼系数
Table 4. Rayleigh damping factors of different BCs
calculation situation α β situation 1 0.226 8.600×10-4 situation 2 35.171 1.065×10-5 situation 3 0.226 8.600×10-4 situation 4 21.818 1.741×10-5 表 5 绕丝燃料棒最大位移
Table 5. Max displacements of fuel rods
calculation situation maximum of average displacement/μm maximum of pulsation displacement RMS/μm ux uy combination ux uy combination situation 1 13.55 -8.85 16.19 3.83 0.06 3.83 situation 2 -0.44 -0.46 0.64 0.01 0.00 0.01 situation 3 -12.23 -47.05 48.61 0.41 0.38 0.56 situation 4 -0.50 -4.58 4.61 0.01 0.01 0.01 表 6 绕丝燃料棒最大接触力
Table 6. Max contact forces of different BCs
calculation situation max contact force RMS/N max pulsation contact force RMS/N situation 1 0.327 7 0.035 5 situation 2 0.262 5 0.004 2 situation 3 0.346 6 0.020 8 situation 4 0.441 8 0.003 9 -
[1] FISCHER P, LOTTES J, SIEGEL A. Large eddy simulation of wire-wrapped fuel pins Ⅰ: hydrodynamics of a single pin[C]//Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. Monterey, California, USA, 2007. [2] MERZARI E, FISCHER P, YUAN H, et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly[J]. Nuclear Engineering and Design, 2016, 298: 218-228. doi: 10.1016/j.nucengdes.2015.11.002 [3] DOVIZIO D, MIKUŽ B, SHAMS A, et al. Validating RANS to predict the flow behavior in wire-wrapped fuel assemblies[J]. Nuclear Engineering and Design, 2020, 356: 110376. doi: 10.1016/j.nucengdes.2019.110376 [4] BROCKMEYER L, MERZARI E, SOLBERG J, et al. One-way coupled simulation of FIV in a 7-pin wire-wrapped fuel pin bundle[J]. Nuclear Engineering and Design, 2020, 356: 110367. doi: 10.1016/j.nucengdes.2019.110367 [5] DOLFEN H, DE RIDDER J, BROCKMEYER L, et al. A multi-stage approach of simulating turbulence-induced vibrations in a wire-wrapped tube bundle for fretting wear prediction[J]. Journal of Fluids and Structures, 2022, 109: 103460. doi: 10.1016/j.jfluidstructs.2021.103460 [6] 吴立村, 陆道纲, 刘雨, 等. 绕丝定位的燃料棒流致振动机理研究[J]. 核动力工程, 2015, 36(2): 147-150.WU Licun, LU Daogang, LIU Yu, et al. Investigation on flow-induced vibration mechanism of fuel rods fixed by wrapped wire[J]. Nuclear Power Engineering, 2015, 36(2): 147-150. (in Chinese) [7] 刘雨, 陆道纲, 汪喆, 等. 超临界水堆燃料棒流致振动简化模型[J]. 核科学与工程, 2017, 37(3): 362-366. doi: 10.3969/j.issn.0258-0918.2017.03.004LIU Yu, LU Daogang, WANG Zhe, et al. A simplified model for flow induced vibration of SCWR fuel rods[J]. Nuclear Science and Engineering, 2017, 37(3): 362-366. (in Chinese) doi: 10.3969/j.issn.0258-0918.2017.03.004 [8] 黑宝平, 高付海, 李晓轩. 轴向流动液态钠中燃料元件的振动响应分析[J]. 地震工程与工程振动, 2017, 37(4): 189-193.HEI Baoping, GAO Fuhai, LI Xiaoxuan. Analysis of vibration response of fuel pin induced by liquid sodium in axial flow[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(4): 189-193. (in Chinese) [9] PAIDOUSSIS M P. Vibration of flexible cylinders with supported ends, induced by axial flow[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(10): 268-279. [10] 冯志鹏, 臧峰刚, 张毅雄. 三维横向流体诱发直管振动的数值模拟[J]. 应用数学和力学, 2013, 34(12): 1311-1320. doi: 10.3879/j.issn.1000-0887.2013.12.010FENG Zhipeng, ZANG Fenggang, ZHANG Yixiong. Numerical simulation of uniform tube vibration induced by 3-dimensional cross-flow[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1311-1320. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.12.010 [11] ZHAO Xielin, CHENG Qian, YU Xiaofei, et al. Modal analysis of lead-bismuth eutectic flow in a single wire-wrapped rod channel[J]. Annals of Nuclear Energy, 2023, 191: 109918. doi: 10.1016/j.anucene.2023.109918 [12] PETTIGREW M J, TAYLOR C E. Vibration analysis of shell-and-tube heat exchangers: an overview, part 1: flow, damping, fluidelastic instability[J]. Journal of Fluids and Structures, 2003, 18(5): 469-483. doi: 10.1016/j.jfluidstructs.2003.08.007 [13] DE SANTIS D, SHAMS A. Analysis of flow induced vibrations and static deformations of fuel rods considering the effects of wire spacers and working fluids[J]. Journal of Fluids and Structures, 2019, 84: 440-465. doi: 10.1016/j.jfluidstructs.2018.11.015 -