留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH调节的纳米平行通道中Powell-Eyring流体的电渗流动

长龙 布仁满都拉 娜仁 孙艳军 菅永军

长龙, 布仁满都拉, 娜仁, 孙艳军, 菅永军. pH调节的纳米平行通道中Powell-Eyring流体的电渗流动[J]. 应用数学和力学, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
引用本文: 长龙, 布仁满都拉, 娜仁, 孙艳军, 菅永军. pH调节的纳米平行通道中Powell-Eyring流体的电渗流动[J]. 应用数学和力学, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
Citation: CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137

pH调节的纳米平行通道中Powell-Eyring流体的电渗流动

doi: 10.21656/1000-0887.450137
基金项目: 

11862018

内蒙古自治区自然科学基金(2024LHMS01010

12262026)

国家自然科学基金(12162003

内蒙古自治区高等学校创新团队发展计划(NMGIRT2323)

自治区直属高校基本科研业务费(NCYWT23035)

2024LHMS01008)

详细信息
    作者简介:

    长龙(1979—),男,副教授,博士(E-mail: suolunga@163.com);菅永军(1974—),男,教授,博士, 博士生导师(通讯作者. E-mail: jianyj@dhu.edu.cn).

    通讯作者:

    菅永军(1974—),男,教授,博士, 博士生导师(通讯作者. E-mail: jianyj@dhu.edu.cn).

  • 中图分类号: O357.1

Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels

Funds: 

11862018

12262026)

The National Science Foundation of China(12162003

  • 摘要: 在调节溶液pH值和盐浓度下, 利用同伦摄动法求解了纳米平行通道内Powell-Eyring流体的电渗流动(electroosmotic flow, EOF), 得到了近似解.通过Chebyshev谱配置法验证了所得的近似解的准确性.在此基础上, 研究了无量纲压力梯度G, 盐浓度MKCI和pH值, Powell-Eyring流体和Newton流体的黏度之比γ对速度剖面u和体积流率(平均速度)Q的影响.结果表明, 同伦摄动法的收敛速度较快, 仅需展开到一阶解就与数值解完全吻合; 同时,MKCI, pH,γ和G对纳米通道中的电荷密度和Powell-Eyring流体电渗流速度具有显著影响.
  • [2]BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows inmicrofluidic systems[J].International Journal of Heat and Mass Transfer,2006,49(5/6): 815-824.
    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices:microfluidics toward a lab-on-a-chip[J].Annual Review of Fluid Mechanics,2004,36: 381-411.
    [3]LEVINE S, MARRIOTT J R, NEALE G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J].Journal of Colloid and Interface Science,1975,52(1): 136-149.
    [4]HSU J P, KAO C Y, TSENG S, et al. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions[J].Journal of Colloid and Interface Science,2002,248(1): 176-184.
    [5]JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through amicroannulus[J].Physics of Fluids,2010,22(4): 042001.
    [6]LIN X H, ZHANG C B, GU J, et al. Poisson-Fokker-Planck model for biomolecules translocation through nanopore driven by electroosmotic flow[J].Science China Physics, Mechanics & Astronomy,2014,57(11): 2104-2113.
    [7]李子瑞. 离子浓差极化效应及其在微纳流控分子富集系统中的应用进展[J]. 中国科学: 技术科学, 2018,48(11): 1151-1166. (LI Zirui. Ion concentration polarization and its application in molecular preconcentration in micro-nanofluidic systems[J].Scientia Sinica: Technologica,2018,48(11): 1151-1166. (in Chinese))
    [8]邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016,37(4): 363-372. (XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J].Applied Mathematics and Mechanics,2016,37(4): 363-372. (in Chinese))
    [9]许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019,40(4): 408-418. (XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J].Applied Mathematics and Mechanics,2019,40(4): 408-418. (in Chinese))
    [10]王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020,41(4): 396-405. (WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J].Applied Mathematics and Mechanics,2020,41(4): 396-405. (in Chinese))
    [11]TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J].Journal of Non-Newtonian Fluid Mechanics,2009,157(1/2): 133-137.
    [12]LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J].Physics of Fluids,2011,23(10): 102001.
    [13]TANG L, HAO Y, PENG L, et al. Ion current rectification properties of non-Newtonian fluids in conicalnanochannels[J].Physical Chemistry Chemical Physics,2024,26(4): 2895-2906.
    [14]姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动[J]. 物理学报, 2015,64(17): 222-227. (JIANG Yuting, QI Haitao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel[J].Acta Physica Sinica,2015,64(17): 222-227. (in Chinese))
    [15]郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023,44(10): 1213-1225. (ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J].Applied Mathematics and Mechanics,2023,44(10): 1213-1225. (in Chinese))
    [16]长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024,45(5): 622-636. (CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J].Applied Mathematics and Mechanics,2024,45(5): 622-636. (in Chinese))
    [17]YANG J, CHEN Y, DU C, et al. Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity[J].Chemical Engineering and Processing: Process Intensification,2023,186: 109339.
    [18]YADAV P K, ROSHAN M. Mathematical modeling of blood flow in an annulus porous region between two coaxial deformable tubes: an advancement to peristaltic endoscope[J].Chinese Journal of Physics,2024,88: 89-109.
    [19]POWELL R E, EYRING H. Mechanisms for the relaxation theory of viscosity[J].Nature,1944,154(3909): 427-428.
    [20]ISLAM S, SHAH A, ZHOU C Y, et al. Homotopy perturbation analysis of slider bearing with Powell-Eyring fluid[J].Zeitschrift Für Angewandte Mathematik und Physik,2009,60(6): 1178-1193.
    [21]HAYAT T, IQBAL Z, QASIM M, et al. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions[J]. International Journal of Heat and Mass Transfer,2012,55(7/8): 1817-1822.
    [22]PATIL P M, GOUDAR B. Impact of impulsive motion on the Eyring-Powell nanofluid flow across a rotating sphere in MHD convective regime: entropy analysis[J].Journal of Magnetism and Magnetic Materials,2023,571: 170590.
    [23]AKBAR Y, HUANG S, ASHRAF M U, et al. Electrothermal analysis for reactive Powell Eyring nanofluid flow regulated by peristaltic pumping with mass transfer[J].Case Studies in Thermal Engineering,2023,44: 102828.
    [24]GOSWAMI P, MONDAL P K, DUTTA S, et al. Electroosmosis of Powell-Eyring fluids under interfacial slip[J].Electrophoresis,2015,36(5): 703-711.
    [25]LI F Q, JIAN Y J, XIE Z Y, et al. Electromagnetohydrodynamic flow of Powell-Eyring fluids in a narrow confinement[J].Journal of Mechanics,2017,33(2): 225-233.
    [26]YEH L H, XUE S, JOO S W, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J].The Journal of Physical Chemistry C,2012,116(6): 4209-4216.
    [27]TSENG S, TAI Y H, HSU J P. Ionic current in a pH-regulated nanochannel filled with multiple ionic species[J].Microfluidics and Nanofluidics,2014,17(5): 933-941.
    [28]MEI L, YEH L H, QIAN S. Buffer effect on the ionic conductance in a pH-regulated nanochannel[J].Electrochemistry Communications,2015,51: 129-132.
    [29]SADEGHI M, SAIDI M H, SADEGHI A. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel[J].Physics of Fluids,2017,29(6): 062002.
    [30]HSU J P, CHU Y Y, LIN C Y, et al. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid[J].Journal of Colloid and Interface Science,2019,537: 358-365.
    [31]BARMAN B, KUMAR D, GOPMANDAL P P, et al. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid[J].Soft Matter,2020,16(29): 6862-6874.
    [32]YANG M, BUREN M, CHANG L, et al. Time periodic electroosmotic flow in a pH-regulated parallel-plate nano- channel[J].Physica Scripta,2022,97(3): 030003.
    [33]BAG N. Impact of pH-regulated wall charge on the modulation of electroosmotic flow and transport of ionic species through slit nanochannels[J].Colloid Journal,2023,85(3): 315-325.
    [34]CHUANG P Y, HSU J P. Electroosmotic flow, ionic current rectification, and selectivity of a conical nanopore modified with a pH-regulated polyelectrolyte layer: influence of functional groups profile[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,676: 132240.
    [35]〖JP3〗PENG L, ZHANG Z, TANG L, et al. Electrokinetic ion transport of viscoelastic fluids in a pH-regulated nanochannel[J].Surfaces and Interfaces,2024,46: 103957.
    [36]MEHTA S K, GHOSH A, MONDAL P K, et al. Electroosmosis of viscoelastic fluids in pH-sensitive hydrophobic microchannels: effect of surface charge-dependent slip length[J].Physics of Fluids,2024,36(2): 023101.
    [37]HE J H. Homotopy perturbation method: a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135(1): 73-79.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-12
  • 修回日期:  2024-06-07

目录

    /

    返回文章
    返回