留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究

白羽 向俊霖 张艳 刘春燕

白羽, 向俊霖, 张艳, 刘春燕. 多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究[J]. 应用数学和力学, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
引用本文: 白羽, 向俊霖, 张艳, 刘春燕. 多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究[J]. 应用数学和力学, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
BAI Yu, XIANG Junlin, ZHANG Yan, LIU Chunyan. Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
Citation: BAI Yu, XIANG Junlin, ZHANG Yan, LIU Chunyan. Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156

多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究

doi: 10.21656/1000-0887.450156
基金项目: 

国家自然科学基金 12102032

北京市教育委员会科技计划一般项目 KM202310016001

北京市教育委员会科技计划一般项目 KM202210016001

详细信息
    作者简介:

    向俊霖(2000—),男,硕士生(E-mail: 1600408272@qq.com)

    张艳(1972—),女,教授,博士,博士生导师(E-mail: zhangyan1@bucea.edu.cn)

    通讯作者:

    白羽(1979—),女,教授,博士,硕士生导师(通讯作者. E-mail: baiyu@bucea.edu.cn)

    刘春燕(1992—),女,博士,硕士生导师(通讯作者. E-mail: liuchunyan@bucea.edu.cn)

  • 中图分类号: O357

Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium

  • 摘要:

    研究了多孔介质中Maxwell流体在具有振荡速度的旋转圆盘上的非稳态斜驻点流动问题. 首先,考虑了流体的滑移效应,利用改进的Darcy-Maxwell本构关系和斜驻点流动特征建立了多孔介质中的非稳态流动模型,并通过求解常微分方程对压强项进行了修正. 接着,利用合理的相似变换将控制方程转化为耦合的无量纲偏微分方程组,用同伦分析方法首次得到了模型的近似解析解. 最后,绘制了随圆盘转速变化的二维流线图、在不同倾斜参数下的三维流线图、不同振幅下随时间变化的速度图,以及速度随其他参数变化的图形. 结果表明:Deborah数的增加使流体受离心力影响加大,流动加速;Darcy参数增大导致了多孔介质的孔隙增多,流速增加;增大滑移参数,一方面会减小圆盘附近流体受到的阻碍,促进流体流动,另一方面会减小离心力对远离圆盘的流体的影响,减缓流体流动. 这些结果为旋转涂层、薄膜制备等相关领域的进一步研究提供了理论指导.

  • 图  1  模型图

    Figure  1.  The model diagram

    图  2  非零辅助参数

    Figure  2.  Nonzero auxiliary parameters

    图  3  二维流线图(τ=1,Sp=0.2,β2=0.2,A0=1,Da=0.6,De=0.6,γ=1)

    Figure  3.  The 2D streamlines(τ=1, Sp=0.2, β2=0.2, A0=1, Da=0.6, De=0.6, γ=1)

    图  4  三维流线图(τ=1,Sp=0.2,β1=0.2,β2=0.2,A0=1,Da=0.6,De=0.6)

    Figure  4.  The 3D streamlines(τ=1, Sp=0.2, β1=0.2, β2=0.2, A0=1, Da=0.6, De=0.6)

    图  5  不同A0对应的速度u的三维非稳态分布

    Figure  5.  The 3D unsteady distributions of u for different A0 values

    图  6  不同De对应的速度v

    Figure  6.  Curves v for different De values

    图  7  不同Sp对应的速度v

    Figure  7.  Curves v for different Sp values

    图  8  不同Da对应的速度v

    Figure  8.  Curves v for different Da values

    表  1  f″(0)对比结果

    Table  1.   Comparison results of f″(0)

    γ Sp=0,De1 =0,A=0,Da=0,m=12
    ref. [32] ref. [30] present
    0 1.311 94 1.311 937 694 1.311 9
    1 1.575 39 1.573 920 484 1.573 5
    2 2.295 1 2.295 642 287 2.295 6
    3 3.365 7 3.365 654 471 3.365 7
    5 6.260 2 6.259 875 006 6.259 9
    10 16.522 9 16.522 814 801 16.523 3
    下载: 导出CSV

    表  2  g′(0)对比结果

    Table  2.   Comparison results of g′(0)

    γ Sp=0,De1 =0,A=0,Da=0,m=12
    ref. [32] ref. [30] present
    0 -1.074 67 -1.074 669 925 -1.074 6
    1 -1.110 0 -1.109 999 72 -1.110 0
    2 -1.196 8 -1.196 830 974 -1.196 7
    3 -1.305 5 -1.305 521 615 -1.305 4
    5 -1.532 0 -1.531 982 498 -1.531 9
    10 -2.033 0 -2.033 027 951 -2.032 9
    下载: 导出CSV
  • [1] 张晟庭, 李靖, 陈掌星, 等. 液桥的动态界面特性对液-液自发渗吸的影响研究[J]. 力学学报, 2024, 56(4): 258-272.

    ZHANG Shengting, LI Jing, CHEN Zhangxing, et al. Study on the effect of dynamic interfacial properties of liquid bridges on spontaneous liquid-liquid imbibition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 258-272. (in Chinese)
    [2] 李树光, 曲凯. 多孔介质中单相气体局部流动的均质化建模[J]. 应用数学和力学, 2024, 45(2): 175-183. doi: 10.21656/1000-0887.440246

    LI Shuguang, QU Kai. Homogenization modeling of single-phase gas local flow in porous media[J]. Applied Mathematics and Mechanics, 2024, 45(2): 175-183. (in Chinese) doi: 10.21656/1000-0887.440246
    [3] 何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212

    HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. (in Chinese) doi: 10.21656/1000-0887.440212
    [4] 钟会影, 史博文, 毕永斌, 等. 黏弹性聚合物驱渗流机理研究进展[J]. 力学学报, 2024, 56(3): 847-861.

    ZHONG Huiying, SHI Bowen, BI Yongbin, et al. Flow mechanism of viscoelastic polymer flooding: state of the art review and outlook[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 847-861. (in Chinese)
    [5] LIU J, WANG S, ZHAO M, et al. Dynamic response of Maxwell fluid in an elastic cylindrical tube[J]. Physics of Fluids, 2022, 34(7): 073109. doi: 10.1063/5.0100887
    [6] BAI Y, FANG H, ZHANG Y. Entropy generation analysis on unsteady flow of Maxwell nanofluid over the stretched wedge with Cattaneo-Christov double diffusion[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(6): 2198-2220.
    [7] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报, 2020, 69(21): 270-280.

    FANG Fang, BAO Lin, TONG Binggang. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J]. Acta Physica Sinica, 2020, 69(21): 270-280. (in Chinese)
    [8] LABROPULU F, LI D, POP I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal of Thermal Sciences, 2010, 49(6): 1042-1050. doi: 10.1016/j.ijthermalsci.2009.12.005
    [9] STUART J T. The viscous flow near a stagnation point when the external flow has uniform vorticity[J]. Journal of the Aerospace Sciences, 1959, 26(2): 124-125. doi: 10.2514/8.7963
    [10] TAMADA. Two-dimensional stagnation-point flow impinging obliquely on a plane wall[J]. Journal of the Physical Society of Japan, 1979, 46(1): 310-311. doi: 10.1143/JPSJ.46.310
    [11] GHAFFARI A, JAVED T, HSIAO K L. Heat transfer analysis of unsteady oblique stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscillating-stretching surface: a numerical approach[J]. Journal of Molecular Liquids, 2016, 219: 748-755. doi: 10.1016/j.molliq.2016.04.014
    [12] NADEEM S, RIAZ KHAN M, KHAN A U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions[J]. Physica Scripta, 2019, 94(7): 075204. doi: 10.1088/1402-4896/ab0973
    [13] KHAN A U, NADEEM S, HUSSAIN S T. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field[J]. Journal of Molecular Liquids, 2016, 224: 1210-1219. doi: 10.1016/j.molliq.2016.10.102
    [14] NAGANTHRAN K, NAZAR R, POP I. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid[J]. International Journal of Mechanical Sciences, 2017, 131: 663-671.
    [15] NGUYEN M N, SAJJAD T, LE T H, et al. Modified Chebyshev wavelets approach for mixed convection flow due to oblique stagnation point along a vertically moving surface with zero mass flux of nanoparticles[J]. Journal of Molecular Liquids, 2021, 343: 117569. doi: 10.1016/j.molliq.2021.117569
    [16] GIANTESIO G, VERNA A, RO CA N C, et al. MHD mixed convection oblique stagnation-point flow on a vertical plate[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(12): 2744-2767.
    [17] BAI Y, TANG Q, ZHANG Y. Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(12): 3824-3847.
    [18] 白羽, 唐巧丽, 张艳. Chebyshev谱方法研究非稳态Maxwell流体在轴向余弦振荡圆柱上的斜驻点流动[J]. 应用数学和力学, 2023, 44(10): 1226-1235. doi: 10.21656/1000-0887.430361

    BAI Yu, TANG Qiaoli, ZHANG Yan. A Chebyshev spectral method for the unsteady Maxwell oblique stationary point flow on an axially cosine oscillating cylinder[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1226-1235. (in Chinese) doi: 10.21656/1000-0887.430361
    [19] 陈文芳, 蔡扶时, 许元泽. Casson流体在旋转圆盘上的流动[J]. 力学学报, 1987, 19(2): 111-117.

    CHEN Wenfang, CAI Fushi, XU Yuanze. Flow of Casson fluid on a rotating disk[J]. Acta Mechanica Sinica, 1987, 19(2): 111-117. (in Chinese)
    [20] 范椿, 陈耀松. Bingham流体在旋转圆盘上流动的数值解[J]. 力学学报, 1995, 27(S1): 14-19.

    FAN Chun, CHEN Yaosong. Numerical solution of the flow of a Bingham fluid on a rotating DlSK[J]. Acta Mechanica Sinica, 1995, 27(S1): 14-19. (in Chinese)
    [21] VON KÁRMÁN T. Vber laminare und turbulente reibung[J]. ZAMM Journal of Applied Mathematics and Mechanics, 1921, 1(4): 233-252. doi: 10.1002/zamm.19210010401
    [22] 明春英, 郑连存, 张欣欣. 幂律流体在旋转盘上的流动与传热数值分析[J]. 北京科技大学学报, 2011, 33(9): 1166-1170.

    MING Chunying, ZHENG Liancun, ZHANG Xinxin. Numerical analysis of the flow and heat transfer of a power-law fluid over a rotating disk[J]. Journal of University of Science and Technology Beijing, 2011, 33(9): 1166-1170. (in Chinese)
    [23] DINARVAND S. On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM[J]. Nonlinear Analysis: Real World Applications, 2010, 11(5): 3389-3398. doi: 10.1016/j.nonrwa.2009.11.029
    [24] VIJAY N, SHARMA K. Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation[J]. International Communications in Heat and Mass Transfer, 2023, 141: 106545. doi: 10.1016/j.icheatmasstransfer.2022.106545
    [25] HAYAT T, NAWAZ M. Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 41-49. doi: 10.1016/j.jtice.2010.04.006
    [26] AHMED A, KHAN M, AHMED J, et al. Unsteady stagnation point flow of Maxwell nanofluid over stretching disk with joule heating[J]. Arabian Journal for Science and Engineering, 2020, 45(7): 5529-5540. doi: 10.1007/s13369-020-04468-9
    [27] KHAN M I, KHAN W A, WAQAS M, et al. Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip[J]. Applied Nanoscience, 2020, 10(12): 5469-5477. doi: 10.1007/s13204-020-01517-5
    [28] LOK Y Y, MERKIN J H, POP I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk[J]. European Journal of Mechanics B: Fluids, 2018, 72: 275-292. doi: 10.1016/j.euromechflu.2018.05.013
    [29] SARKAR S, SAHOO B. Oblique stagnation flow towards a rotating disc[J]. European Journal of Mechanics B: Fluids, 2021, 85: 82-89. doi: 10.1016/j.euromechflu.2020.08.009
    [30] MAHMUD K, DURAIHEM F Z, MEHMOOD R, et al. Heat transport in inclined flow towards a rotating disk under MHD[J]. Scientific Reports, 2023, 13: 5949. doi: 10.1038/s41598-023-32828-6
    [31] TAN W, MASUOKA T. Stability analysis of a Maxwell fluid in a porous medium heated from below[J]. Physics Letters A, 2007, 360(3): 454-460. doi: 10.1016/j.physleta.2006.08.054
    [32] WANG C Y. Off-centered stagnation flow towards a rotating disc[J]. International Journal of Engineering Science, 2008, 46(4): 391-396. doi: 10.1016/j.ijengsci.2008.01.014
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-10-17
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回