留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型混合气体多松弛动理学模型方程及其验证分析

彭傲平 吴俊林 李志辉

彭傲平, 吴俊林, 李志辉. 一种新型混合气体多松弛动理学模型方程及其验证分析[J]. 应用数学和力学, 2025, 46(10): 1245-1255. doi: 10.21656/1000-0887.450175
引用本文: 彭傲平, 吴俊林, 李志辉. 一种新型混合气体多松弛动理学模型方程及其验证分析[J]. 应用数学和力学, 2025, 46(10): 1245-1255. doi: 10.21656/1000-0887.450175
PENG Aoping, WU Junlin, LI Zhihui. Numerical Evaluation of a Novel Multi-Relaxation Kinetic Model for Gas Mixture Flows[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1245-1255. doi: 10.21656/1000-0887.450175
Citation: PENG Aoping, WU Junlin, LI Zhihui. Numerical Evaluation of a Novel Multi-Relaxation Kinetic Model for Gas Mixture Flows[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1245-1255. doi: 10.21656/1000-0887.450175

一种新型混合气体多松弛动理学模型方程及其验证分析

doi: 10.21656/1000-0887.450175
基金项目: 

国家自然科学基金(12332013

11902339)

详细信息
    作者简介:

    彭傲平(1984—),男,副研究员,博士,硕士生导师;吴俊林(1985—),男,副研究员,博士(通讯作者. E-mail: wujunlin130@aliyun.com).

    通讯作者:

    吴俊林(1985—),男,副研究员,博士(通讯作者. E-mail: wujunlin130@aliyun.com).

  • 中图分类号: O354

Numerical Evaluation of a Novel Multi-Relaxation Kinetic Model for Gas Mixture Flows

Funds: 

The National Science Foundation of China(12332013

11902339)

  • 摘要: 为研究跨流域气体混合物输运现象的流动机理,从气体动理学理论的基本方程Boltzmann方程出发,发展了一种适于混合气体的多松弛碰撞模型方程,并建立了与DSMC方法相适应的碰撞松弛频率表达式.模拟了多组元混合气体一维激波结构问题,与DSMC结果的对比表明:发展的模型方程能较好地反映激波内部混合气体整体及各组元的宏观参数变化过程,能用于模拟和分析混合气体各组元的扩散规律,验证了该多松弛模型方程的有效性和正确性.模拟结果表明:分子质量最小的组元扩散效应最显著,但受其他组元的影响较小,且流动的非平衡效应主要由分子质量最大的组元产生;在激波内部因温度梯度引起的热扩散对分子质量大小更加敏感,同时,组元浓度梯度引起的质量扩散使组元分离,在激波下游产生显著的非平衡效应,且在多组元混合气体中,中等质量分子的加入增大了大质量分子的扩散,加大了分离效应.
  • [2]BOYD I D, SCHWARTZENTRUBER T E. Nonequilibrium Gas Dynamics and Molecular Simulation[M]. Cambridge: Cambridge University Press, 2017.
    查普曼 S, 考林T G. 非均匀气体的数学理论[M]. 刘大有, 王伯懿, 译. 北京: 科学出版社, 1985. (CHAPMAN S, COWLING T G. The Mathematical Theory of Non-Uniform Gases[M]. LIU Dayou, WANG Boyi, transl. Beijing: Science Press, 1985. (Chinese version))
    [3]秦文瑾, 韩天祥, 张振东, 等. 喷雾碰壁燃烧数值模拟研究[J]. 应用数学和力学, 2023,44(9): 1087-1096. (QIN Wenjin, HAN Tianxiang, ZHANG Zhendong, et al. Numerical simulation study of spray wall impingement combustion[J]. Applied Mathematics and Mechanics,2023,44(9): 1087-1096. (in Chinese))
    [4]卞荫贵, 徐立功. 气动热力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2010. (BIAN Yingui, XU Ligong. Aerothermodynamics[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2010. (in Chinese))
    [5]HASH D, HASSAN H. A decoupled DSMC/Navier-Stokes analysis of a transitional flow experiment[C]//34th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1996: AIAA1996-353.
    [6]李中华, 党雷宁, 李志辉, 等. 天宫飞行器过渡流区高超声速绕流N-S/DSMC耦合计算[J]. 载人航天, 2020,26(5): 543-549. (LI Zhonghua, DANG Leining, LI Zhihui, et al. N-S/DSMC hybrid numerical simulation for hypersonic transitional flow around disintegrated objects of Tiangong vehicle[J]. Manned Spaceflight,2020,26(5): 543-549. (in Chinese))
    [7]BAILO R, REY T. Projective and telescopic projective integration for non-linear kinetic mixtures[J]. Journal of Computational Physics,2022,458: 111082.
    [8]LIU C, XU K. Unified gas-kinetic wave-particle methods Ⅳ: multi-species gas mixture and plasma transport[J]. Advances in Aerodynamics,2021,3(1): 9.
    [9]BRULL S. An ellipsoidal statistical model for a monoatomic and a polyatomic gas mixture[J]. Communications in Mathematical Sciences,2021,19(8): 2177-2194.
    [10]BRULL S. An ellipsoidal statistical model for gas mixtures[J]. Communications in Mathematical Sciences,2015,13(1): 1-13.
    [11]LIU S, LIANG Y. Asymptotic-preserving Boltzmann model equations for binary gas mixture[J]. Physical Review E,2016,93(2): 023102.
    [12]BARANGER C, DAUVOIS Y, MAROIS G, et al. A BGK model for high temperature rarefied gas flows[J]. European Journal of Mechanics B: Fluids,2020,80: 1-12.
    [13]ANDRIES P, AOKI K, PERTHAME B. A consistent BGK-type model for gas mixtures[J]. Journal of Statistical Physics,2002,106(5): 993-1018.
    [14]TODOROVA B N, WHITE C, STEIJL R. Numerical evaluation of novel kinetic models for binary gas mixture flows[J]. Physics of Fluids,2020,32: 016102.
    [15]LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics,2004,193(2): 708-738.
    [16]PENGA P, LI Z H, WU J L, et al. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes[J]. Journal of Computational Physics,2016,327: 919-942.
    [17]吴俊林, 李志辉, 彭傲平, 等. Boltzmann-Rykov模型的有限体积方法计算[J]. 应用数学和力学, 2014,35(2): 121-129. (WU Junlin, LI Zhihui, PENG Aoping, et al. Calculation of Boltzmann-Rykov model equation by finite volume method[J]. Applied Mathematics and Mechanics,2014,35(2): 121-129. (in Chinese))
    [18]BOBYLEV A V, BISI M, GROPPI M, et al. A general consistent BGK model for gas mixtures[J]. Kinetic & Related Models,2018,11(6): 1377-1393.
    [19]沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003. (SHEN Qing. Rarefied Gas Dynamics[M]. Beijing: National Defense Industry Press, 2003. (in Chinese))
    [20]BIRD G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. Oxford: Oxford University Press, 1994.
    [21]KOLODNER I. Moment description of gas mixture-Ⅰ: 7980[R]. New York University Report, 1957.
    [22]彭傲平. 大型航天器跨流域非平衡玻尔兹曼模型方程统一算法应用研究[D]. 绵阳: 中国空气动力研究与发展中心, 2017. (PENG Aoping. Application and study of gas-kinetic unified algorithm based on non-equilibrium Boltzmann model equation for large-scale spacecraft covering all flow regimes[D]. Miangyang: China Aerodynamics Research and Development Center, 2017 (in Chinese))
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2025-03-04
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回