留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类不确定多目标优化问题的鲁棒标量化

何瑜 夏远梅 郭辉

何瑜, 夏远梅, 郭辉. 一类不确定多目标优化问题的鲁棒标量化[J]. 应用数学和力学, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194
引用本文: 何瑜, 夏远梅, 郭辉. 一类不确定多目标优化问题的鲁棒标量化[J]. 应用数学和力学, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194
HE Yu, XIA Yuanmei, GUO Hui. Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194
Citation: HE Yu, XIA Yuanmei, GUO Hui. Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194

一类不确定多目标优化问题的鲁棒标量化

doi: 10.21656/1000-0887.450194
基金项目: 

国家重点研发计划 2023YFA1011302

国家自然科学基金 12171063

国家自然科学基金 11991024

国家自然科学基金 12101096

重庆市自然科学基金 cstc2022ycjh-bgzxm0114

重庆市自然科学基金 cstc2021jcyj-msxmX0280

重庆市教育委员会科学技术研究计划 KJQN202100521

重庆市教育委员会科学技术研究计划 KJZD-K202300509

详细信息
    作者简介:

    何瑜(1998—),女,硕士生(E-mail: xiaohekaixin07@163.com)

    郭辉(1980—),女,副教授,博士,硕士生导师(E-mail: guoguofly@163.com)

    通讯作者:

    夏远梅(1990—),女,副教授,博士,硕士生导师(通讯作者. E-mail: mathymxia@cqnu.edu.cn)

  • 中图分类号: O221.6

Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems

  • 摘要: 标量化方法在不确定多目标优化问题求解中具有十分重要的作用.首先,基于鲁棒优化的思想,提出了不确定多目标优化问题的鲁棒Pascoletti-Serafini标量化,并得出了鲁棒弱有效解和鲁棒有效解的标量化性质.进一步,提出了不确定多目标优化问题的鲁棒弹性Pascoletti-Serafini标量化并得出了鲁棒弱有效解、鲁棒有效解和鲁棒真有效解的标量化性质.此外,也给出了一些例子对主要结果进行说明。
  • [1] ALIZADEH B, JADID S. Uncertainty handling in power system expansion planning under a robust multi-objective framework[J]. IET Generation, Transmission & Distribution, 2014, 8(12): 2012-2026.
    [2] 杜宏宇, 张宏宇, 陈波, 等. 计及多种需求响应资源的虚拟电厂运行机制及控制策略优化[J]. 电工电能新技术, 2023, 42(7): 77-86.

    DU Hongyu, ZHANG Hongyu, CHEN Bo, et al. Operation mechanism and control strategy optimization of virtual power plant considering multiple DR resources[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(7): 77-86. (in Chinese)
    [3] 严浩源, 赵天阳, 刘晓川, 等. 计及多重阻塞的电动汽车移动储能特性建模[J]. 应用数学和力学, 2022, 43(11): 1214-1226. doi: 10.21656/1000-0887.430303

    YAN Haoyuan, ZHAO Tianyang, LIU Xiaochuan, et al. Modeling of electric vehicles as mobile energy storage systems considering multiple congestions[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1214-1226. (in Chinese) doi: 10.21656/1000-0887.430303
    [4] FLIEGE J, WERNER R. Robust multiobjective optimization & applications in portfolio optimization[J]. European Journal of Operational Research, 2014, 234(2): 422-433. doi: 10.1016/j.ejor.2013.10.028
    [5] KUROIWA D, LEE G M. On robust multiobjective optimization[J]. Journal of Nonlinear and Convex Analysis, 2012, 40(2): 305-317.
    [6] ZAMANI M, SOLEIMANI-DAMANEH M, KABGANI A. Robustness in nonsmooth nonlinear multi-objective programming[J]. European Journal of Operational Research, 2015, 247(2): 370-378. doi: 10.1016/j.ejor.2015.06.031
    [7] EHRGOTT M, IDE J, SCHÖBEL A. Minmax robustness for multi-objective optimization problems[J]. European Journal of Operational Research, 2014, 239(1): 17-31. doi: 10.1016/j.ejor.2014.03.013
    [8] GASS S, SAATY T. The computational algorithm for the parametric objective function[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 39-45.
    [9] HAIMES Y Y, WISMER D A, LASDON L S. On a bicriterion formulation of the problems of integrated system identification and system optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1971, 1(3): 296-297.
    [10] 张晓青, 赵克全. 一类鲁棒多目标优化问题的标量化性质[J]. 重庆师范大学学报(自然科学版), 2018, 35(2): 16-20.

    ZHANG Xiaoqing, ZHAO Kequan. Scalarization characterizations for a class of robust multi-objective optimization problems[J]. Journal of Chongqing Normal University (Natural Science), 2018, 35(2): 16-20. (in Chinese)
    [11] 刘浩洋, 户将, 李勇锋, 等. 最优化: 建模、算法与理论[M]. 北京: 高等教育出版社, 2020.

    LIU Haoyang, HU Jiang, LI Yongfeng, et al. Optimization: Modeling, Algorithm and Theory[M]. Beijing: Higher Education Press, 2020. (in Chinese)
    [12] HOUSKA B, FRASCH J, DIEHL M. An augmented Lagrangian based algorithm for distributed non-convex optimization[J]. SIAM Journal on Optimization, 2016, 26(2): 1101-1127. doi: 10.1137/140975991
    [13] ZENG J, YIN W. On nonconvex decentralized gradient descent[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2834-2848. doi: 10.1109/TSP.2018.2818081
    [14] PASCOLETTI A, SERAFINI P. Scalarizing vector optimization problems[J]. Journal of Optimization Theory and Applications, 1984, 42(4): 499-524. doi: 10.1007/BF00934564
    [15] EICHFELDER G. An adaptive scalarization method in multiobjective optimization[J]. SIAM Journal on Optimization, 2009, 19(4): 1694-1718. doi: 10.1137/060672029
    [16] AKBARI F, GHAZNAVI M, KHORRAM E. A revised Pascoletti-Serafini scalarization method for multiobjective optimization problems[J]. Journal of Optimization Theory and Applications, 2018, 178(2): 560-590. doi: 10.1007/s10957-018-1289-2
    [17] 夏远梅, 赵克全, 高英. 多目标优化的广义Pascoletti-Serafini标量化[J]. 中国科学: 数学, 2024, 54(2): 231-244.

    XIA Yuanmei, ZHAO Kequan, GAO Ying. Generalized Pascoletti-Serafini scalarization for multi-objective-optimization[J]. Scientia Sinica: Mathematica, 2024, 54(2): 231-244. (in Chinese)
    [18] 夏远梅, 赵克全. 多目标优化范数标量化模型最优值的误差估计[J]. 系统科学与数学, 2023, 43(9): 2319-2327.

    XIA Yuanmei, ZHAO Kequan. Error estimation of optimal value of norm scalarization model for multi-objective optimization problems[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(9): 2319-2327. (in Chinese)
    [19] 赵克全, 杨新民, 夏远梅. 多目标优化问题的完全标量化[J]. 中国科学: 数学, 2021, 51(2): 411-424.

    ZHAO Kequan, YANG Xinmin, XIA Yuanmei. Complete scalarization of multi-objective optimization problems[J]. Scientia Sinica: Mathematica, 2021, 51(2): 411-424. (in Chinese)
    [20] 夏远梅. 多目标优化问题的标量化方法及其在机器学习中的应用[D]. 上海: 上海大学, 2020.

    XIA Yuanmei. Scalarization methods of multi-objective optimization problems and its applications in machine learning[D]. Shanghai: Shanghai University, 2020. (in Chinese)
    [21] 林锉云, 董家礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.

    LIN Cuoyun, DONG Jiali. Method and Theory of Multi-Objective Optimization[M]. Changchun: Jilin Education Press, 1992. (in Chinese)
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-10-22
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回