留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲矩形微通道内纳米流体的电渗流动及其传热特性

邢靖楠 刘勇波

邢靖楠, 刘勇波. 弯曲矩形微通道内纳米流体的电渗流动及其传热特性[J]. 应用数学和力学, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
引用本文: 邢靖楠, 刘勇波. 弯曲矩形微通道内纳米流体的电渗流动及其传热特性[J]. 应用数学和力学, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
XING Jingnan, LIU Yongbo. Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
Citation: XING Jingnan, LIU Yongbo. Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199

弯曲矩形微通道内纳米流体的电渗流动及其传热特性

doi: 10.21656/1000-0887.450199
基金项目: 

内蒙古自然科学基金 2021BS01008

内蒙古自治区高等学校青年科技人才发展项目 NJYT24058

详细信息
    作者简介:

    邢靖楠(1992—), 女, 讲师, 硕士(E-mail: 1139695829@qq.com)

    通讯作者:

    刘勇波(1990—), 男, 副教授, 博士, 硕士生导师(通讯作者. E-mail: liuyb@mail.imu.edu.cn)

  • 中图分类号: O357.1

Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels

  • 摘要: 弯曲微通道在电渗流及其传热方面展现出显著的优势, 包括增大电渗流速度和提高传热效率. 同时, 纳米流体因其优良的传热性能也受到广泛关注. 然而, 目前关于弯曲微通道内纳米流体的电渗流及传热机理的研究仍显不足. 该研究旨在探讨在低zeta势和恒壁面热流密度条件下, 弯曲微通道的几何效应对微通道中纳米流体的电渗透流动及换热特性的影响. 研究中考虑了蠕变Dean流, 由于不存在向心力, 速度场保持直线分布. 利用Fourier变换方法得到了速度和温度的半解析解, 进而推导出了Nusselt数Nu的数学表达式. 通过分析速度、温度和Nu随曲率比δ、纳米粒子体积分数ϕ、特征压力速度和特征电渗速度之比ur等相关物理参数的变化趋势, 揭示了这种流动和传热现象的特性. 结果表明, Nu随着压力速度的增大而减小, 随曲率比的增大而减小, 而随着纳米粒子体积分数的增大而增大. 该文的结果为微纳米流体器件的设计和应用提供了重要的参考价值, 有助于优化器件性能和应用.
  • 图  1  弯曲矩形微通道示意图

    Figure  1.  Schematic diagram of the curved rectangular microchannel

    图  2  无量纲温度TNu的解与文献[46]中的数据对比

    Figure  2.  Comparison of dimensionless temperature T and Nu with ref. [46]

    图  3  z=b/2处的速度分布随曲率比δ的变化趋势(ϕ=4%, K=50, ζ=1)

    Figure  3.  Variations of velocity distributions at z=b/2 with δ for ϕ=4%, K=50, ζ=1

    图  4  z=b/2处的速度分布随纳米粒子体积分数ϕ的变化趋势(δ=0.5, K=50, ζ=1)

    Figure  4.  Variation trends of the velocity distributions at z=b/2 with volume fraction of the nanoparticles ϕ for δ=0.5, K=50, ζ=1

    图  5  z=b/2处的温度分布随曲率比δ的变化趋势(ϕ=4%, K=50, ζ=1, S=1)

    Figure  5.  Variation trends of the temperature distributions at z=b/2 with curvature ratio δ for ϕ=4%, K=50, ζ=1, S=1

    图  6  z=b/2处的温度分布随纳米粒子体积分数ϕ的变化趋势(δ=0.5, K=50, ζ=1, S=1)

    Figure  6.  Variation trends of the temperature distributions at z=b/2 with volume fraction of the nanoparticles ϕ for δ=0.5, K=50, ζ=1, S=1

    图  7  Nu随速度比ur、曲率比δ、和纳米粒子体积分数ϕ的变化趋势

    Figure  7.  Variation trends of Nu with velocity ratio ur, curvature ratio δ and nanoparticle volume fraction ϕ

  • [1] 长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333

    CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. (in Chinese) doi: 10.21656/1000-0887.440333
    [2] 杜昌隆, 夏威豪, 杨嘉杰, 等. 缩放管中黏弹性流体电渗压力混合流模拟研究[J]. 应用数学和力学, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255

    DU Changlong, XIA Weihao, YANG Jiajie, et al. Simulation of electroosmotic and pressure-driven mixed flow of viscoelastic fluids in converging-diverging tubes[J]. Applied Mathematics and Mechanics, 2023, 44(6): 643-653. (in Chinese) doi: 10.21656/1000-0887.430255
    [3] YUAN S, ZHOU M, LIU X, et al. Effect of pressure-driven flow on electroosmotic flow and electrokinetic mass transport in microchannels[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123925.
    [4] MALA G M, LI D, DALE J D. Heat transfer and fluid flow in microchannels[J]. International Journal of Heat and Mass Transfer, 1997, 40(13): 3079-3088.
    [5] AZARI M, SADEGHI A, CHAKRABORTY S. Electroosmotic flow and heat transfer in a heterogeneous circular microchannel[J]. Applied Mathematical Modelling, 2020, 87: 640-654.
    [6] AL-RJOUB M F, ROY A K, GANGULI S, et al. Enhanced heat transfer in a micro-scale heat exchanger using nano-particle laden electro-osmotic flow[J]. International Communications in Heat and Mass Transfer, 2015, 68: 228-235.
    [7] VOCALE P, GERI M, CATTANI L, et al. Electro-osmotic heat transfer in elliptical microchannels under H1 boundary condition[J]. International Journal of Thermal Sciences, 2013, 72: 92-101.
    [8] AL-RJOUB M F, ROY A K, GANGULI S, et al. Assessment of an active-cooling micro-channel heat sink device, using electro-osmotic flow[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4560-4569.
    [9] ENG P F, NITHIARASU P, GUY O J. An experimental study on an electro-osmotic flow-based silicon heat spreader[J]. Microfluidics and Nanofluidics, 2010, 9(4): 787-795.
    [10] XUAN X, XU B, SINTON D, et al. Electroosmotic flow with Joule heating effects[J]. Lab on a Chip, 2004, 4(3): 230-236.
    [11] WANG C, WONG T N, YANG C, et al. Characterization of electroosmotic flow in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3115-3121.
    [12] QI C, NG C O. Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential[J]. International Journal of Heat and Mass Transfer, 2018, 119: 52-64.
    [13] TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157(1/2): 133-137.
    [14] CHAUBE M K, YADAV A, TRIPATHI D, et al. Electroosmotic flow of biorheological micropolar fluids through microfluidic channels[J]. Korea-Australia Rheology Journal, 2018, 30(2): 89-98.
    [15] CHANG C C, WANG C Y. Starting electroosmotic flow in an annulus and in a rectangular channel[J]. Electrophoresis, 2008, 29(14): 2970-2979.
    [16] XUAN X C, LI D Q. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J]. Journal of Colloid and Interface Science, 2005, 289(1): 291-303.
    [17] DUTTA P, BESKOK A, WARBURTON T C. Electroosmotic flow control in complex microgeometries[J]. Journal of Microelectromechanical Systems, 2002, 11(1): 36-44.
    [18] GERI M, LORENZINI M, MORINI G L. Effects of the channel geometry and of the fluid composition on the performances of DC electro-osmotic pumps[J]. International Journal of Thermal Sciences, 2012, 55: 114-121.
    [19] TANG G Y, YAN D G, YANG C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628-639.
    [20] ZHAO C L, YANG C. Joule heating induced heat transfer for electroosmotic flow of power-law fluids in a microcapillary[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2044-2051.
    [21] PAN J J, WANG X Y, CHIANG C L, et al. Joule heating and electroosmotic flow in cellular micro/nano electroporation[J]. Lab on a Chip, 2024, 24(4): 819-831.
    [22] CHAKRABORTY S, ROY S. Thermally developing electroosmotic transport of nanofluids in microchannels[J]. Microfluidics and Nanofluidics, 2008, 4(6): 501-511.
    [23] SARKAR S, GANGULY S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field[J]. Microfluidics and Nanofluidics, 2015, 18 (4): 623-636.
    [24] TRIPATHI D, SHARMA A, BÉG O A. Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity[J]. International Journal of Heat and Mass Transfer, 2017, 111: 138-149.
    [25] AKRAM J, AKBAR N S, TRIPATHI D. Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel[J]. Chinese Journal of Physics, 2020, 68: 745-763.
    [26] ZHAO G P, JIAN Y J. Thermal transport of combined electroosmotically and pressure driven nanofluid flow in soft nanochannels[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(1): 379-391.
    [27] NARLA V K, TRIPATHI D, BÉG O A. Electro-osmotic nanofluid flow in a curved microchannel[J]. Chinese Journal of Physics, 2020, 67: 544-558.
    [28] AKRAM J, AKBAR N S, ALANSARI M, et al. Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106208.
    [29] BILAL M, ASGHAR I, RAMZAN M, et al. Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel[J]. Scientific Reports, 2022, 12(1): 4771.
    [30] SARAVANI M S, KALTEH M. Heat transfer investigation of combined electroosmotic/pressure driven nanofluid flow in a microchannel: effect of heterogeneous surface potential and slip boundary condition[J]. European Journal of Mechanics B: Fluids, 2020, 80: 13-25.
    [31] KOCKMANN N, ENGLER M, HALLER D, et al. Fluid dynamics and transfer processes in bended microchannels[J]. Heat Transfer Engineering, 2005, 26(3): 71-78.
    [32] SCHÖNFELD F, HARDT S. Simulation of helical flows in microchannels[J]. AIChE Journal, 2004, 50(4): 771-778.
    [33] JIANG F, DRESE K S, HARDT S, et al. Helical flows and chaotic mixing in curved micro channels[J]. AIChE Journal, 2004, 50(9): 2297-2305.
    [34] OOKAWARA S, HIGASHI R, STREET D, et al. Feasibility study on concentration of slurry and classification of contained particles by microchannel[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 171-178.
    [35] ZOUROB M, MOHR S, MAYES A G, et al. A micro-reactor for preparing uniform molecularly imprinted polymer beads[J]. Lab on a Chip, 2006, 6(2): 296-301.
    [36] LUO W J. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube[J]. Journal of Colloid and Interface Science, 2004, 278(2): 497-507.
    [37] LUO W J, PAN Y J, YANG R J. Transient analysis of electro-osmotic secondary flow induced by DC or AC electric field in a curved rectangular microchannel[J]. Journal of Micromechanics and Microengineering, 2005, 15(3): 463-473.
    [38] NEKOUBIN N. Electroosmotic flow of power-law fluids in curved rectangular microchannel with high zeta potentials[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 260: 54-68.
    [39] LIU Y B, XING J N, JIAN Y J. Heat transfer and entropy generation analysis of electroosmotic flows in curved rectangular nanochannels considering the influence of steric effects[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106501.
    [40] LIU Y B. Effect of boundary slip on electroosmotic flow in a curved rectangular microchannel[J]. Chinese Physics B, 2024, 33(7): 074101.
    [41] WANG M, CHEN S. On applicability of Poisson-Boltzmann equation for micro-and nanoscale electroosmotic flows[J]. Communications in Computational Physics, 2008, 3(5): 1087-1099.
    [42] GANGULY S, SARKAR S, HOTA T K, et al. Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field[J]. Chemical Engineering Science, 2015, 126: 10-21.
    [43] LIU Y, JIAN Y, YANG C. Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels[J]. Energy, 2020, 198: 117401.
    [44] NOROUZI M, ZARE VAMERZANI B, DAVOODI M, et al. An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts[J]. Rheologica Acta, 2015, 54(5): 391-402.
    [45] TING T W, HUNG Y M, GUO N. Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels[J]. International Communications in Heat and Mass Transfer, 2014, 57: 309-318.
    [46] SU J, JIAN Y, CHANG L. Thermally fully developed electroosmotic flow through a rectangular microchannel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6285-6290.
  • 加载中
图(7)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  12
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-31
  • 刊出日期:  2025-06-01

目录

    /

    返回文章
    返回