留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相变颗粒转鼓中非满充颗粒休止角实验研究

李佳鹏 齐晓霓 屈晓航

李佳鹏, 齐晓霓, 屈晓航. 相变颗粒转鼓中非满充颗粒休止角实验研究[J]. 应用数学和力学, 2025, 46(7): 882-892. doi: 10.21656/1000-0887.450202
引用本文: 李佳鹏, 齐晓霓, 屈晓航. 相变颗粒转鼓中非满充颗粒休止角实验研究[J]. 应用数学和力学, 2025, 46(7): 882-892. doi: 10.21656/1000-0887.450202
LI Jiapeng, QI Xiaoni, QU Xiaohang. Experimental Study on the Dynamic Angles of Repose of Non-Fully Filled Phase Change Particles in a Rotating Drum[J]. Applied Mathematics and Mechanics, 2025, 46(7): 882-892. doi: 10.21656/1000-0887.450202
Citation: LI Jiapeng, QI Xiaoni, QU Xiaohang. Experimental Study on the Dynamic Angles of Repose of Non-Fully Filled Phase Change Particles in a Rotating Drum[J]. Applied Mathematics and Mechanics, 2025, 46(7): 882-892. doi: 10.21656/1000-0887.450202

相变颗粒转鼓中非满充颗粒休止角实验研究

doi: 10.21656/1000-0887.450202
基金项目: 

国家自然科学基金 52276157

山东省优秀青年科学基金 ZR2023YQ048

详细信息
    作者简介:

    李佳鹏(1998—),男,硕士生(E-mail: ljp5671017@163.com)

    通讯作者:

    屈晓航(1989—)男,教授,博士,博士生导师(通讯作者. E-mail: quxiaohang@outlook.com)

  • 中图分类号: TP391

Experimental Study on the Dynamic Angles of Repose of Non-Fully Filled Phase Change Particles in a Rotating Drum

  • 摘要: 以水为相变材料制作非满充球形颗粒,搭建转鼓实验装置,通过改变颗粒粒径、颗粒内相变材料的体积含量、转鼓填充率以及转速等参数,来探究颗粒内部相界面运动对转鼓中颗粒动态休止角的影响. 其中,休止角大小通过图像采集和MATLAB图像处理获得. 结果表明:相界面的运动会使部分颗粒出现滑移,提高颗粒流动性并使休止角随转速呈波动性变化;而随着体积含量的增加,颗粒流动性增强,休止角减小,转速对颗粒的作用逐渐减弱;此外,随着填充率降低或粒径增大,颗粒床层动态休止角减小,流动能力增强,但更易受相界面运动影响.
  • 图  1  非满充球形颗粒示意图

    Figure  1.  Non-fully filled spherical particles

    图  2  实验装置示意图

    Figure  2.  The experimental device

    图  3  MATLAB图像处理流程

    Figure  3.  The MATLAB image processing flow

    图  4  可行性验证

    Figure  4.  The feasibility verification

    图  5  体积含量对休止角的影响

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Effects of the volume fraction on the angle of repose

    图  6  40 r/min和8 r/min休止角的差值

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The difference in the angle of repose between 40 r/min and 8 r/min

    图  7  填充率对不同体积含量下休止角的影响

    Figure  7.  Effects of filling rates on the angle of repose at different volume contents

    图  8  填充率对不同转速下颗粒休止角的影响

    Figure  8.  Effects of filling rates on angles of repose at different rotational speeds

    图  9  相界面晃动示意图

    Figure  9.  The schematic diagram illustrating the motion of the phase interface

    图  10  转鼓中颗粒的滑移

    Figure  10.  Slip of particles in the rotating drum

    图  11  粒径对不同体积含量下休止角的影响

    Figure  11.  Effects of particle sizes on angles of repose at different volume contents

    图  12  粒径对不同转速下休止角的影响

    Figure  12.  Effects of particle sizes on angles of repose at different rotational speeds

    表  1  不同粒径颗粒体积含量与球壳质量之比

    Table  1.   The ratios of the volume contents to the masses of the spherical shells at different particle sizes

    particle size/mm volume fraction
    25% 50% 75% 90%
    15 0.12 0.3 0.4 0.51
    20 0.74 1.46 2.06 2.45
    25 1.46 2.33 2.45 2.76
    下载: 导出CSV
  • [1] CHEN W, CHEN W. Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules[J]. Renewable Energy, 2020, 157: 491-501.
    [2] LI D C, WANG J H, DING Y L, et al. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage[J]. Applied Energy, 2019, 236: 1168-1182.
    [3] 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657.

    SHENG Li, XUE Xinjie, BEI Yanjun, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. (in Chinese)
    [4] 孙增宝, 柳馨, 铁生年. 纳米SiC改性Na2SO4 · 10H2O-Na2HPO4 · 12H2O共晶盐纳米相变流体制备及其性能影响[J]. 硅酸盐学报, 2023, 51(10): 2644-2652.

    SUN Zengbao, LIU Xin, TIE Shengnian. Preparation and performance of Na2SO4 · 10H2O-Na2HPO4 · 12H2O eutectic hydrated salt phase change nanofluids modified by nano-SiC[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2644-2652. (in Chinese)
    [5] 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.

    LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. (in Chinese)
    [6] 王倩蓉, 李正贵, 卢昌燊, 等. 翅片式相变储能器内赤藻糖醇蓄热性能研究[J]. 热能动力工程, 2021, 36(2): 49-56.

    WANG Qianrong, LI Zhenggui, LU Changshen, et al. Study on the thermal storage performance of erythritol in a fin type phase change energy storage device[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(2): 49-56. (in Chinese)
    [7] FAN L W, ZHU Z Q, XIAO S L, et al. An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage[J]. Applied Thermal Engineering, 2016, 100: 1063-1075.
    [8] 周鑫晨, 章学来, 韩兴超, 等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工, 2018, 38(12): 58-61.

    ZHOU Xinchen, ZHANG Xuelai, HAN Xingchao, et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry, 2018, 38(12): 58-61. (in Chinese)
    [9] QU X H, FANG D, QI X N. Direct contact heat transfer enhancement between two stratified immiscible fluids by artificial interface oscillations[J]. International Journal of Heat and Mass Transfer, 2019, 138: 226-234.
    [10] QU X H, QI X N, GUO Q J, et al. Influence of flow-induced oscillating disturbance on the surface heat transfer of impingement flow[J]. Korean Journal of Chemical Engineering, 2021, 38(11): 2217-2228.
    [11] QU X H, JIANG S, QI X N. Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement[J]. Applied Energy, 2022, 316: 119130.
    [12] QU X H, QI X N, ZHANG Y, et al. Performance of a rotating latent heat thermal energy storage unit with heat transfer from different surfaces[J]. Applied Thermal Engineering, 2024, 248: 123147.
    [13] BRIDGWATER J. Mixing of powders and granular materials by mechanical means: a perspective[J]. Particuology, 2012, 10(4): 397-427.
    [14] SANTOS D A, BARROZO M A S, DUARTE C R, et al. Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM[J]. Advanced Powder Technology, 2016, 27(2): 692-703.
    [15] MELLMANN J. The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118(3): 251-270.
    [16] CHEN H, ZHAO X Q, XIAO Y G, et al. Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 527-535.
    [17] 曲航, 赵军, 刘晓燕. 回转窑内滚动状态下颗粒横向运动的影响因素的实验研究[J]. 硅酸盐通报, 2007, 26(3): 441-446.

    QU Hang, ZHAO Jun, LIU Xiaoyan. Experimental study on the influence factors of transverse motion of particle at rolling regime in the rotary kiln[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(3): 441-446. (in Chinese)
    [18] WONG A C Y. Characterisation of the flowability of glass beads by bulk densities ratio[J]. Chemical Engineering Science, 2000, 55(18): 3855-3859.
    [19] HENEIN H, BRIMACOMBE J K, WATKINSON A P. Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical Transactions B, 1983, 14(2): 191-205.
    [20] 刘义伦, 王燕鹏, 赵先琼. 颗粒粒径对回转窑内散体物料休止角的影响规律[J]. 中南大学学报(自然科学版), 2017, 48(12): 3256-3262.

    LIU Yilun, WANG Yanpeng, ZHAO Xianqiong. Influence of particle size on repose angle of bulk materials in rotary kiln[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3256-3262. (in Chinese)
    [21] DURY C M, RISTOW G H, MOSS J L, et al. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57(4): 4491-4497.
    [22] POHLMAN N A, OTTINO J M, LUEPTOW R M. End-wall effects in granular tumblers: from quasi-two-dimensional flow to three-dimensional flow[J]. Physical Review E, 2006, 74(3): 031305.
    [23] HILL K M, KAKALIOS J. Reversible axial segregation of rotating granular media[J]. Physical Review E, 1995, 52(4): 4393-4400.
    [24] LIU X, MA W, HOU Q, et al. End-wall effects on the mixing process of granular assemblies in a short rotating drum[J]. Powder Technology, 2018, 339: 497-505.
    [25] 陆坤权, 刘寄星. 颗粒物质(上)[J]. 物理, 2004, 33(9): 629-635.

    LU Kunquan, LIU Jixing. Static and dynamic properties of granular matter(Ⅰ)[J]. Physics, 2004, 33(9): 629-635. (in Chinese)
    [26] 刘小燕, 周生健, 张小刚. 基于图像处理的回转窑物料休止角检测方法[J]. 控制工程, 2009, 16(4): 498-501.

    LIU Xiaoyan, ZHOU Shengjian, ZHANG Xiaogang. Measurement of repose angle of solids in rotary kilns based on image processing[J]. Control Engineering of China, 2009, 16(4): 498-501. (in Chinese)
    [27] DURY C M, RISTOW G H, MOSS J L, et al. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57(4): 4491-4497.
    [28] YAMANE K, NAKAGAWA M, ALTOBELLI S A, et al. Steady particulate flows in a horizontal rotating cylinder[J]. Physics of Fluids, 1998, 10(6): 1419-1427.
    [29] HE S Y, GAN J Q, PINSON D, et al. Flow regimes of cohesionless ellipsoidal particles in a rotating drum[J]. Powder Technology, 2019, 354: 174-187.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-09-20
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回