Experimental Study on the Dynamic Angles of Repose of Non-Fully Filled Phase Change Particles in a Rotating Drum
-
摘要: 以水为相变材料制作非满充球形颗粒,搭建转鼓实验装置,通过改变颗粒粒径、颗粒内相变材料的体积含量、转鼓填充率以及转速等参数,来探究颗粒内部相界面运动对转鼓中颗粒动态休止角的影响. 其中,休止角大小通过图像采集和MATLAB图像处理获得. 结果表明:相界面的运动会使部分颗粒出现滑移,提高颗粒流动性并使休止角随转速呈波动性变化;而随着体积含量的增加,颗粒流动性增强,休止角减小,转速对颗粒的作用逐渐减弱;此外,随着填充率降低或粒径增大,颗粒床层动态休止角减小,流动能力增强,但更易受相界面运动影响.Abstract: Spherical particles non-filled with water as the phase change material were fabricated. A rotating drum experimental setup was built. the influences of the motion of the phase interface inside the particles on the dynamic angles of repose of the particles in the rotating drum were investigated with varying particle diameters, volume fractions of the phase change material inside the particles, filling ratios of the rotating drum, and rotation speeds. The dynamic angle of repose was obtained through image capture and the MATLAB image processing. The results indicate that, the motion of the phase interface can cause some particles to slip, enhancing particle flowability and resulting in a fluctuating change in the resting angle with an increasing rotational speed. As the volume fraction increases, the flowability of the particles will improve, and the resting angle will decrease, while the effect of the rotational speed on the particles will gradually diminish. Furthermore, as the filling rate decreases and the particle size increases, the dynamic resting angle of the particle bed layer will decrease, the particle flow capacity will heighten, and the particle bed layer will be more susceptible to the phase interface motion.
-
Key words:
- dynamic angle of repose /
- non-fully filled particle /
- volume fraction /
- phase interface
-
表 1 不同粒径颗粒体积含量与球壳质量之比
Table 1. The ratios of the volume contents to the masses of the spherical shells at different particle sizes
particle size/mm volume fraction 25% 50% 75% 90% 15 0.12 0.3 0.4 0.51 20 0.74 1.46 2.06 2.45 25 1.46 2.33 2.45 2.76 -
[1] CHEN W, CHEN W. Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules[J]. Renewable Energy, 2020, 157: 491-501. [2] LI D C, WANG J H, DING Y L, et al. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage[J]. Applied Energy, 2019, 236: 1168-1182. [3] 圣力, 薛新杰, 孛衍君, 等. 基于相变储能介质热泵储电系统的模拟与分析[J]. 储能科学与技术, 2022, 11(11): 3649-3657.SHENG Li, XUE Xinjie, BEI Yanjun, et al. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium[J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. (in Chinese) [4] 孙增宝, 柳馨, 铁生年. 纳米SiC改性Na2SO4 · 10H2O-Na2HPO4 · 12H2O共晶盐纳米相变流体制备及其性能影响[J]. 硅酸盐学报, 2023, 51(10): 2644-2652.SUN Zengbao, LIU Xin, TIE Shengnian. Preparation and performance of Na2SO4 · 10H2O-Na2HPO4 · 12H2O eutectic hydrated salt phase change nanofluids modified by nano-SiC[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2644-2652. (in Chinese) [5] 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. (in Chinese) [6] 王倩蓉, 李正贵, 卢昌燊, 等. 翅片式相变储能器内赤藻糖醇蓄热性能研究[J]. 热能动力工程, 2021, 36(2): 49-56.WANG Qianrong, LI Zhenggui, LU Changshen, et al. Study on the thermal storage performance of erythritol in a fin type phase change energy storage device[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(2): 49-56. (in Chinese) [7] FAN L W, ZHU Z Q, XIAO S L, et al. An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage[J]. Applied Thermal Engineering, 2016, 100: 1063-1075. [8] 周鑫晨, 章学来, 韩兴超, 等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工, 2018, 38(12): 58-61.ZHOU Xinchen, ZHANG Xuelai, HAN Xingchao, et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry, 2018, 38(12): 58-61. (in Chinese) [9] QU X H, FANG D, QI X N. Direct contact heat transfer enhancement between two stratified immiscible fluids by artificial interface oscillations[J]. International Journal of Heat and Mass Transfer, 2019, 138: 226-234. [10] QU X H, QI X N, GUO Q J, et al. Influence of flow-induced oscillating disturbance on the surface heat transfer of impingement flow[J]. Korean Journal of Chemical Engineering, 2021, 38(11): 2217-2228. [11] QU X H, JIANG S, QI X N. Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement[J]. Applied Energy, 2022, 316: 119130. [12] QU X H, QI X N, ZHANG Y, et al. Performance of a rotating latent heat thermal energy storage unit with heat transfer from different surfaces[J]. Applied Thermal Engineering, 2024, 248: 123147. [13] BRIDGWATER J. Mixing of powders and granular materials by mechanical means: a perspective[J]. Particuology, 2012, 10(4): 397-427. [14] SANTOS D A, BARROZO M A S, DUARTE C R, et al. Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM[J]. Advanced Powder Technology, 2016, 27(2): 692-703. [15] MELLMANN J. The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118(3): 251-270. [16] CHEN H, ZHAO X Q, XIAO Y G, et al. Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 527-535. [17] 曲航, 赵军, 刘晓燕. 回转窑内滚动状态下颗粒横向运动的影响因素的实验研究[J]. 硅酸盐通报, 2007, 26(3): 441-446.QU Hang, ZHAO Jun, LIU Xiaoyan. Experimental study on the influence factors of transverse motion of particle at rolling regime in the rotary kiln[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(3): 441-446. (in Chinese) [18] WONG A C Y. Characterisation of the flowability of glass beads by bulk densities ratio[J]. Chemical Engineering Science, 2000, 55(18): 3855-3859. [19] HENEIN H, BRIMACOMBE J K, WATKINSON A P. Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical Transactions B, 1983, 14(2): 191-205. [20] 刘义伦, 王燕鹏, 赵先琼. 颗粒粒径对回转窑内散体物料休止角的影响规律[J]. 中南大学学报(自然科学版), 2017, 48(12): 3256-3262.LIU Yilun, WANG Yanpeng, ZHAO Xianqiong. Influence of particle size on repose angle of bulk materials in rotary kiln[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3256-3262. (in Chinese) [21] DURY C M, RISTOW G H, MOSS J L, et al. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57(4): 4491-4497. [22] POHLMAN N A, OTTINO J M, LUEPTOW R M. End-wall effects in granular tumblers: from quasi-two-dimensional flow to three-dimensional flow[J]. Physical Review E, 2006, 74(3): 031305. [23] HILL K M, KAKALIOS J. Reversible axial segregation of rotating granular media[J]. Physical Review E, 1995, 52(4): 4393-4400. [24] LIU X, MA W, HOU Q, et al. End-wall effects on the mixing process of granular assemblies in a short rotating drum[J]. Powder Technology, 2018, 339: 497-505. [25] 陆坤权, 刘寄星. 颗粒物质(上)[J]. 物理, 2004, 33(9): 629-635.LU Kunquan, LIU Jixing. Static and dynamic properties of granular matter(Ⅰ)[J]. Physics, 2004, 33(9): 629-635. (in Chinese) [26] 刘小燕, 周生健, 张小刚. 基于图像处理的回转窑物料休止角检测方法[J]. 控制工程, 2009, 16(4): 498-501.LIU Xiaoyan, ZHOU Shengjian, ZHANG Xiaogang. Measurement of repose angle of solids in rotary kilns based on image processing[J]. Control Engineering of China, 2009, 16(4): 498-501. (in Chinese) [27] DURY C M, RISTOW G H, MOSS J L, et al. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57(4): 4491-4497. [28] YAMANE K, NAKAGAWA M, ALTOBELLI S A, et al. Steady particulate flows in a horizontal rotating cylinder[J]. Physics of Fluids, 1998, 10(6): 1419-1427. [29] HE S Y, GAN J Q, PINSON D, et al. Flow regimes of cohesionless ellipsoidal particles in a rotating drum[J]. Powder Technology, 2019, 354: 174-187. -