留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

初始几何缺陷对含裂纹的双向功能梯度梁振动特性研究

史迎辉 唐怀平 赵英治

史迎辉, 唐怀平, 赵英治. 初始几何缺陷对含裂纹的双向功能梯度梁振动特性研究[J]. 应用数学和力学, 2025, 46(9): 1147-1157. doi: 10.21656/1000-0887.450213
引用本文: 史迎辉, 唐怀平, 赵英治. 初始几何缺陷对含裂纹的双向功能梯度梁振动特性研究[J]. 应用数学和力学, 2025, 46(9): 1147-1157. doi: 10.21656/1000-0887.450213
SHI Yinghui, TANG Huaiping, ZHAO Yingzhi. Study on Natural Vibration Characteristics of Bidirectional Functionally Graded Material Beams With Cracks and Geometric Imperfections[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1147-1157. doi: 10.21656/1000-0887.450213
Citation: SHI Yinghui, TANG Huaiping, ZHAO Yingzhi. Study on Natural Vibration Characteristics of Bidirectional Functionally Graded Material Beams With Cracks and Geometric Imperfections[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1147-1157. doi: 10.21656/1000-0887.450213

初始几何缺陷对含裂纹的双向功能梯度梁振动特性研究

doi: 10.21656/1000-0887.450213
基金项目: 

国家自然科学基金 51778548

详细信息
    作者简介:

    史迎辉(1999—),男,硕士生(E-mail: syhui@my.swjtu.edu.cn)

    通讯作者:

    唐怀平(1967—),男,副教授,博士(通讯作者. E-mail: thp-vib@163.com)

  • 中图分类号: O342

Study on Natural Vibration Characteristics of Bidirectional Functionally Graded Material Beams With Cracks and Geometric Imperfections

  • 摘要:

    基于Timoshenko梁理论,考虑初始几何缺陷与裂纹,利用Hamilton原理推导了含初始几何缺陷与裂纹的双向功能梯度梁的振动控制方程,使用无质量扭转弹簧模型模拟裂纹,采用微分求积法对结构控制方程求解. 探究了初始几何缺陷类型、几何缺陷的无量纲振幅、裂纹深度等因素对梁结构自由振动无量纲频率的影响. 结果表明:在一定轴向功能梯度指标下,无量纲基频随初始几何缺陷无量纲振幅增大而增大,随裂纹深度的增加而减小,且全局缺陷对无量纲基频的影响要大于正弦缺陷.

  • 图  1  双向功能梯度梁几何尺寸及坐标系

    Figure  1.  The geometry and coordinates of the bi-directional functionally graded beam

    图  2  无质量弹性旋转弹簧模拟FGM裂纹梁的裂纹

    Figure  2.  The crack modeled with a massless elastic rotational spring

    图  3  弯曲缺陷梁与不同缺陷类型

    Figure  3.  The bending imperfect beam and different imperfection modes

    图  4  几何缺陷无量纲振幅Ac与轴向功能梯度指标β共同对双向FGM裂纹梁无量纲基频的影响

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The effects of Ac and β on the dimensionless 1st order frequency of the bi-directional FGM cracked beam

    图  5  裂纹深度a对双向FGM裂纹梁无量纲基频的影响

    Figure  5.  The effects of crack depth a on the dimensionless 1st order frequency of the bi-directional FGM cracked beam

    图  6  初始几何缺陷的无量纲振幅Ac对双向FGM裂纹梁无量纲基频的影响

    Figure  6.  The effects of dimensionless amplitude Ac of the geometric imperfection on the dimensionless 1st order frequency of the bi-directional FGM cracked beam

    表  1  含初始几何缺陷双向FGM裂纹梁无量纲基频收敛性分析

    Table  1.   Convergence verification of dimensionless the 1st order frequency of the bi-directional FGM cracked beam with geometric imperfection

    N
    9 11 13 15 17 19 21 23
    Ω 9.932 7 9.974 0 9.969 3 9.969 6 9.969 6 9.969 6 9.969 6 9.969 6
    下载: 导出CSV

    表  2  含初始几何缺陷无裂纹均质梁无量纲基频理论计算与仿真结果对比

    Table  2.   Comparison of dimensionless 1st order frequencies between theoretical calculations and simulation results of the crackless homogeneous material beam with geometric imperfection

    imperfection method Ac
    0 0.2 0.4 0.6 0.8 1
    sine DQM 6.454 1 6.599 3 7.016 7 7.661 8 8.482 6 9.432 9
    ANSYS 6.454 2 6.599 4 7.015 7 7.660 0 8.479 5 9.427 4
    global DQM 6.454 1 7.154 9 8.872 7 11.004 4 13.169 1 15.162 4
    ANSYS 6.454 2 7.154 1 8.868 3 10.994 4 13.150 6 15.132 8
    下载: 导出CSV

    表  3  无初始几何缺陷双向FGM裂纹梁无量纲基频与文献对比

    Table  3.   Comparison of dimensionless 1st order frequencies of the bi-directional FGM cracked beam without geometric imperfection

    E2/E1 this paper ref. [22] ref. [23]
    0.2 0.369 4 0.361 0 0.360 2
    1 0.392 2 0.384 8 0.384 0
    5 0.369 9 0.364 9 0.364 1
    下载: 导出CSV

    表  4  不同裂纹位置与不同缺陷无量纲振幅对双向FGM梁无量纲基频影响

    Table  4.   The influences of different crack positions and imperfection degrees on the dimensionless 1st order frequency of the bi-directional FGM beam

    crack location imperfection Ac
    0.2 0.4 0.6 0.8 1
    n=0.25 sine 6.196 8 6.580 2 7.173 7 7.927 1 8.794 1
    global 6.666 1 8.139 7 9.932 3 11.684 0 13.209 3
    n=0.5 sine 6.176 2 6.558 7 7.151 3 7.903 3 8.768 1
    global 6.650 6 8.139 5 9.952 5 11.725 7 13.271 5
    n=0.75 sine 6.206 8 6.593 4 7.189 0 7.943 1 8.809 7
    global 6.682 2 8.165 5 9.966 5 11.725 8 13.258 9
    下载: 导出CSV
  • [1] LOH G H, PEI E, HARRISON D, et al. An overview of functionally graded additive manufacturing[J]. Additive Manufacturing, 2018, 23 : 34-44. doi: 10.1016/j.addma.2018.06.023
    [2] ZHANG B, JAISWAL P, RAI R, et al. Additive manufacturing of functionally graded material objects: a review[J]. Journal of Computing and Information Science in Engineering, 2018, 18 (4): 041002. doi: 10.1115/1.4039683
    [3] DUBEY A, JAISWAL S, HALDAR S, et al. Functionally gradient magnesium-based composite for temporary orthopaedic implant with improved corrosion resistance and osteogenic properties[J]. Biomedical Materials, 2021, 16 (1): 015017. doi: 10.1088/1748-605X/abb721
    [4] 陈琦, 马连生, 郭章新. 功能梯度材料梁自由振动的线性与非线性振动[J]. 力学与实践, 2023, 45 (3): 520-525.

    CHEN Qi, MA Liansheng, GUO Zhangxin. Linear and nonlinear vibration of free vibration of functional gradient material beams[J]. Mechanics in Engineering, 2023, 45 (3): 520-525. (in Chinese)
    [5] 滕兆春, 马铃权, 付小华. 多孔功能梯度材料Timoshenko梁的非线性自由振动分析[J]. 西北工业大学学报, 2022, 40 (5): 1145-1154.

    TENG Zhaochun, MA Lingquan, FU Xiaohua. Nonlinear free vibration analysis of Timoshenko beams with porous functionally graded materials[J]. Journal of Northwestern Polytechnical University, 2022, 40 (5): 1145-1154. (in Chinese)
    [6] GHAZARYAN D, BURLAYENKO V N, AVETISYAN A, et al. Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method[J]. Journal of Engineering Mathematics, 2018, 110 (1): 97-121. doi: 10.1007/s10665-017-9937-3
    [7] SHAHBA A, RAJASEKARAN S. Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials[J]. Applied Mathematical Modelling, 2012, 36 (7): 3094-3111. doi: 10.1016/j.apm.2011.09.073
    [8] 葛仁余, 张金轮, 姜忠宇, 等. 轴向功能梯度变截面Timoshenko梁自由振动的研究[J]. 振动与冲击, 2017, 36 (22): 158-165.

    GE Renyu, ZHANG Jinlun, JIANG Zhongyu, et al. Free vibration analysis of axially functionally Timoshenko beams with a non-uniform cross-section[J]. Journal of Vibration and Shock, 2017, 36 (22): 158-165. (in Chinese)
    [9] 杜运兴, 程鹏, 周芬. 变截面功能梯度Timoshenko梁的自由振动分析[J]. 湖南大学学报(自然科学版), 2021, 48 (5): 55-62.

    DU Yunxing, CHENG Peng, ZHOU Fen. Free vibration analysis of functionally graded Timoshenko beams with variable section[J]. Journal of Hunan University (Natural Sciences), 2021, 48 (5): 55-62. (in Chinese)
    [10] KE L L, YANG J, KITIPORNCHAI S. An analytical study on the nonlinear vibration offunctionally graded beams[J]. Meccanica, 2010, 45 (6): 743-752. doi: 10.1007/s11012-009-9276-1
    [11] ZHAO Y, TANG H, ZHANG B, et al. Effect of hygrothermal loads on the nonlinear vibration of porous bi-directional functionally graded beams placed on an elastic foundation[J]. International Journal of Structural Stability and Dynamics, 2024, 24 (11): 2450114. doi: 10.1142/S0219455424501141
    [12] 赵英治, 唐怀平, 赖泽东, 等. 弹性地基上多孔二维功能梯度材料微梁自由振动研究[J]. 应用数学和力学, 2023, 44 (11): 1354-1365. doi: 10.21656/1000-0887.440050

    ZHAO Yingzhi, TANG Huaiping, LAI Zedong, et al. Free vibration analysis of porous 2D functionally graded material microbeams on winkler's foundation[J]. Applied Mathematics and Mechanics, 2023, 44 (11): 1354-1365. (in Chinese) doi: 10.21656/1000-0887.440050
    [13] 雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43 (10): 1133-1145. doi: 10.21656/1000-0887.420323

    LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of 2D functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43 (10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323
    [14] YOUCEF T, RABIA B, DAOUADJI T H. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity[J]. Structural Engineering and Mechanics, 2021, 77 (2): 217-229.
    [15] 马明辉, 郑玉芳, 陈昌萍. 含裂纹功能梯度材料Timoshenko梁的非线性静力分析[J]. 贵州大学学报(自然科学版), 2021, 38 (6): 98-103.

    MA Minghui, ZHENG Yufang, CHEN Changping. Nonlinear static analysis of cracked functionally graded material Timoshenko beam[J]. Journal of Guizhou University (Natural Sciences), 2021, 38 (6): 98-103. (in Chinese)
    [16] 衡星, 朱翔, 李天匀, 等. 含裂纹功能梯度材料梁结构的振动功率流特性分析[J]. 噪声与振动控制, 2017, 37 (4): 40-46.

    HENG Xing, ZHU Xiang, LI Tianyun, et al. Vibrational power flow analysis of the functionally graded beam with an open crack[J]. Noise and Vibration Control, 2017, 37 (4): 40-46. (in Chinese)
    [17] YAYLACI M, YAYLACI E U, OZDEMIR M E, et al. Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods[J]. Steel and Composite Structures, 2023, 46 (4): 565-575.
    [18] LIU H, WU H, LYU Z. Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection[J]. Aerospace Science and Technology, 2020, 98 : 105702. doi: 10.1016/j.ast.2020.105702
    [19] 田婷婷, 王忠民, 王清波. 初始几何缺陷的功能梯度梁振动特性分析[J]. 力学与实践, 2022, 44 (5): 1151-1158.

    TIAN Tingting, WANG Zhongmin, WANG Qingbo. Vibration characteristics analysis of functionally graded beams with initial geometric defect[J]. Mechanics in Engineering, 2022, 44 (5): 1151-1158. (in Chinese)
    [20] GUO L J, MAO J J, ZHANG W, et al. Modeling and analyze of behaviors of functionally graded graphene reinforced composite beam with geometric imperfection in multiphysics[J]. Aerospace Science and Technology, 2022, 127 : 107722. doi: 10.1016/j.ast.2022.107722
    [21] ZHANG W, GUO L J, WANG Y, et al. Nonlinear low-velocity impact response of GRC beam with geometric imperfection under thermo-electro-mechanical loads[J]. Nonlinear Dynamics, 2022, 110 (4): 3255-3272. doi: 10.1007/s11071-022-07809-5
    [22] KITIPORNCHAI S, KE L L, YANG J, et al. Nonlinear vibration of edge cracked functionally graded Timoshenko beams[J]. Journal of Sound and Vibration, 2009, 324 (3/4/5): 962-982.
    [23] KE L L, YANG J, KITIPORNCHAI S, et al. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials[J]. Mechanics of Advanced Materials and Structures, 2009, 16 (6): 488-502. doi: 10.1080/15376490902781175
    [24] 石兴东, 程鹏, 张宇飞. 带裂纹石墨烯增强金属泡沫梁的振动特性研究[J]. 动力学与控制学报, 2024, 22 (3): 48-55.

    SHI Xingdong, CHENG Peng, ZHANG Yufei. Study on vibration characteristics of cracked metal foam beams reinforced with graphene[J]. Journal of Dynamics and Control, 2024, 22 (3): 48-55. (in Chinese)
    [25] DIMAROGONAS A D. Vibration of cracked structures: a state of the art review[J]. Engineering Fracture Mechanics, 1996, 55 (5): 831-857. doi: 10.1016/0013-7944(94)00175-8
    [26] CHONDROS T G, DIMAROGONAS A D, YAO J. A continuous cracked beam vibration theory[J]. Journal of Sound and Vibration, 1998, 215 (1): 17-34. doi: 10.1006/jsvi.1998.1640
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2025-06-07
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回