Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields
-
摘要: 铁电隧穿结通常为金属-超薄铁电薄膜-金属三明治结构,利用铁电极化状态调控量子隧穿效应获得不同电阻态,实现数据存储功能. 其因读写速度快、功耗低、存储密度高及非易失性存储等特点,成为了新一代信息存储技术重要发展方向. 然而,这种超薄铁电薄膜因极化翻转电场大、速度高,往往存在局部温度升高、稳定性降低等问题,因此,进一步降低铁电薄膜驱动电场对铁电隧穿器件设计至关重要. 研究表明,铁电薄膜可通过调控衬底应变使其处于多畴共存状态,各畴之间翻转驱动电场随着能量势垒的降低而大幅降低. 该文基于WKB近似的电子隧穿理论并结合Landau唯象理论,研究了衬底应变对铁电驱动电场、量子隧穿特性及隧穿电阻开关比的影响. 计算结果表明:通过衬底应变调控,经典钙钛矿铁电薄膜PbTiO3和BaTiO3同时存在面外向上、向下极化以及面内极化3种电阻状态,有效驱动电场可降低至25 MV/m,比单畴铁电隧穿结驱动电场减少了76%. 研究结果为低能耗、多阻态铁电存储器件设计提供了理论基础.
-
关键词:
- 铁电多态隧穿 /
- 低能耗 /
- 共存畴 /
- Landau唯象理论 /
- 衬底应变
Abstract: The ferroelectric tunneling junction, with a metal-ferroelectric ultra-thin film-metal structure, has different tunneling resistance states through polarization manipulation, leading to potential applications in next-generation information storage devices with low-power consumption, fast reading/writing speed, high storage density, and non-volatility. However, the ferroelectric thin films still experience high-temperature rises with reduced stability due to high driving fields, and reducing the driving electric field is crucial for designing ferroelectric tunneling devices. The ferroelectric thin films with coexisting domains have lowered barriers and decreased driving electric fields for domain switching, which are achieved through substrate manipulation. Herein the substrate effects on the driving field, the tunneling resistance switching ratio and the tunneling properties, were studied based on the WKB approximation combined with the Landau phenomenological theory. The results show that, the ferroelectric tunnel junction with coexisting domains exhibits 3 resistive states corresponding to out-of-plane and in-plane polarizations. The effective driving electric field can be reduced to 25 MV/m, which is 76% lower than that with 2 resistive single domains. The proposed theoretical framework provides a fundamental understanding of the formation of multi-state and reduction of the driving field for low-energy, multi-resistance ferroelectric storage devices. -
表 1 铁电薄膜的Landau系数、电致伸缩系数和刚度系数
Table 1. The Landau coefficient, the stiffness coefficient, and the electromechanical coefficient of ferroelectric thin films
PbTiO3 BaTiO3 a1/(C-2·m2·N) 3.8×(T-752)×105 3.8×(T-383)×105 a11/(C-4·m6·N) -7.3×107 3.6×(T-448)×106 a12/(C-4·m6·N) 7.5×108 4.9×108 a111/(C-6·m10·N) 2.6×108 6.6×109 a112/(C-6·m10·N) 6.1×109 2.9×109 Q11/(C-2·m4) 0.089 0.11 Q12/(C-2·m4) -0.026 -0.043 s11/(m2·N-1) 8.0×10-12 8.3×10-12 s12/(m2·N-1) -2.5×10-12 -2.7×10-12 表 2 铁电隧穿结的读写电压设计(PbTiO3薄膜)
Table 2. The design of reading and writing voltages of the ferroelectric tunnel junction (PbTiO3)
misfit strain um/% coercive field Ec/(MV/m) writing voltage Vw/V reading voltage Vr/V -1.5 120 0.25 -0.05~0.05 +0.5 28.5 0.06 -0.05~0.05 +1.8 200 0.4 -0.05~0.05 表 3 铁电隧穿结的计算参数
Table 3. Coefficients of the ferroelectric tunnel junction
component of FTJ relative coefficient ferroelectric layer εb/(8.854×10-12) 90 φ1/eV 0.5 κ3/eV -4.5 μ33 10 ν 0.3 electrode (SrRuO3) ls1/m 6×10-11 εe1/(8.854×10-12) 8.45 m0/kg 9.109 4×10-31 -
[1] ATHLE R, BORG M. Ferroelectric tunnel junction memristors for in-memory computing accelerators[J]. Advanced Intelligent Systems, 2024, 6(3): 2300554. doi: 10.1002/aisy.202300554 [2] GARCIA V, BIBES M. Ferroelectric tunnel junctions for information storage and processing[J]. Nature Communications, 2014, 5(1): 4289. doi: 10.1038/ncomms5289 [3] DU X Z, SUN H Y, WANG H, et al. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1355-1361. [4] ESAKI A L, LAIBOWITZ R B, STILES P J. Polar switch[J]. IBM Technical Disclosure Bulletin, 1971, 13(8): 2161-2164. [5] YANO Y, LIJIMA K, DAITOH Y, et al. Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation[J]. Journal of Applied Physics, 1994, 76(12): 7833-7838. doi: 10.1063/1.357891 [6] MARUYAMA T, SAITOH M, SAKAI I, et al. Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate[J]. Applied Physics Letters, 1998, 73(24): 3524-3526. doi: 10.1063/1.122824 [7] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358: 136-138. doi: 10.1038/358136a0 [8] JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509. doi: 10.1038/nature01501 [9] FONG D D, STEPHENSON G B, STREIFFER S K, et al. Ferroelectricity in ultrathin perovskite films[J]. Science, 2004, 304(5677): 1650-1653. doi: 10.1126/science.1098252 [10] CONTRERAS J R, KOHLSTEDT H, POPPE U, et al. Resistive switching in metal-ferroelectric-metal junctions[J]. Applied Physics Letters, 2003, 83(22): 4595-4597. doi: 10.1063/1.1627944 [11] KOHLSTEDT H, PERTSEV N A, CONTRERASJ R, et al. Theoretical current-voltage characteristics of ferroelectric tunnel junctions[J]. Physical Review B, 2005, 72(12): 125341. doi: 10.1103/PhysRevB.72.125341 [12] WEN Z, WU D. Ferroelectric tunnel junctions: modulations on the potential barrier[J]. Advanced Materials, 2020, 32(27): 1904123. doi: 10.1002/adma.201904123 [13] JIA Y Y, YANG Q Q, FANG Y W, et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions[J]. Nature Communications, 2024, 15(1): 693. doi: 10.1038/s41467-024-44927-7 [14] MAX B, HOFFMANN M, MULAOSMANOVIC H, et al. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing[J]. ACS Applied Electronic Materials, 2020, 2(12): 4023-4033. doi: 10.1021/acsaelm.0c00832 [15] WANG X, WU M, WEI F S, et al. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness[J]. Materials Research Express, 2019, 6(4): 046307. doi: 10.1088/2053-1591/aafae0 [16] WANG H, GUAN Z, LI J, et al. Silicon-compatible ferroelectric tunnel junctions with a SiO2/Hf0.5Zr0.5O2 composite barrier as low-voltage and ultra-high-speed memristors[J]. Advanced Materials, 2024, 36(15): 2211305. doi: 10.1002/adma.202211305 [17] BOYN S, GARCIA V, FUSIL S, et al. Engineering ferroelectric tunnel junctions through potential profile shaping[J]. APL Materials, 2015, 3(6): 061101. doi: 10.1063/1.4922769 [18] WEN Z, LI C, WU D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semi-conductor tunnel junctions[J]. Nature Materials, 2013, 12(7): 617-621. doi: 10.1038/nmat3649 [19] LI X Q, LIU J Q, HUANG J Q, et al. Epitaxial strain enhanced ferroelectric polarization toward a giant tunneling electroresistance[J]. ACS Nano, 2024, 18(11): 7989-8001. doi: 10.1021/acsnano.3c10933 [20] WANG J, JU S, LI Z Y. The converse piezoelectric effect on electrontunnelling across a junction with a ferroelectric-ferromagnetic composite barrier[J]. Journal of Physics D: Applied Physics, 2010, 43(13): 135003. doi: 10.1088/0022-3727/43/13/135003 [21] LU X Y, CAO W W, JIANG W H, et al. Converse-piezoelectric effect on current-voltage characteristics of symmetric ferroelectric tunnel junctions[J]. Journal of Applied Physics, 2012, 111: 014103. doi: 10.1063/1.3673600 [22] SOKOLOV A, BAK O, LU H, et al. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions[J]. Nanotechnology, 2015, 26(30): 305202. doi: 10.1088/0957-4484/26/30/305202 [23] WANG Z J, GUAN Z Y, SUN H Y, et al. High-speed nanoscale ferroelectric tunnel junction for multilevel memory and neural network computing[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24602-24609. [24] RUAN J J, QIU X B, YUAN Z S, et al. Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier[J]. Applied Physics Letters, 2015, 107(23): 232902. doi: 10.1063/1.4937390 [25] LV W M, LI C J, ZHENG L M, et al. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration[J]. Advanced Materials, 2017, 29(24): 1606165. doi: 10.1002/adma.201606165 [26] DAMODARAN A R, PANDYA S, AGAR J C, et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films[J]. Advanced Materials, 2017, 29(37): 1702069. doi: 10.1002/adma.201702069 [27] LANGENBERG E, PAIK H, SMITH E H, et al. Strain-engineered ferroelastic structures in PbTiO3 films and their control by electric fields[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20691-20703. [28] LU X Y, CHEN Z H, CAO Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films[J]. Nature Communications, 2019, 10(1): 3951. doi: 10.1038/s41467-019-11825-2 [29] DONG Y Z, LU X Y, FAN J H, et al. Strain engineering of domain coexistence in epitaxial lead-titanite thin films[J]. Coatings, 2022, 12(4): 542. doi: 10.3390/coatings12040542 [30] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. doi: 10.1126/science.aaw2781 [31] WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): 2105071. doi: 10.1002/adma.202105071 [32] KOUKHAR V G, PERTSEV N A, WASER R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures[J]. Physical Review B, 2001, 64(21): 214103. doi: 10.1103/PhysRevB.64.214103 [33] SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. doi: 10.1063/1.1702682 [34] MEHTA R R, SILVERMAN B D, JACOBS J T. Depolarization fields in thin ferroelectric films[J]. Journal of Applied Physics, 1973, 44(8): 3379-3385. doi: 10.1063/1.1662770 [35] PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical Review Letters, 1998, 80(9): 1988-1991. doi: 10.1103/PhysRevLett.80.1988 [36] KUKHAR V G, PERTSEV N A, KOHLSTEDT H, et al. Polarization states of polydomain epitaxial Pb(Zr1-xTix)O3 thin films and their dielectric properties[J]. Physical Review B, 2006, 73(21): 214103. doi: 10.1103/PhysRevB.73.214103 [37] KIGHELMAN Z, DAMJANOVIC D, CANTONI M, et al. Properties of ferroelectric PbTiO3 thin films[J]. Journal of Applied Physics, 2002, 91(3): 1495-1501. doi: 10.1063/1.1431432 [38] BOYN S, GIROD S, GARCIA V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J]. Applied Physics Letters, 2014, 104(5): 052909. doi: 10.1063/1.4864100 [39] DONG Y Z, LU X Y. Multistep polarization switching and reduced coercive field in lead titanate thin films[J]. Physical Review B, 2024, 109(21): 214101. doi: 10.1103/PhysRevB.109.214101 [40] GERRA G, TAGANTSEV A K, SETTER N, et al. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3[J]. Physical Review Letters, 2006, 96(10): 107603. doi: 10.1103/PhysRevLett.96.107603 [41] WOO C H, ZHENG Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional[J]. Applied Physics A, 2008, 91(1): 59-63. doi: 10.1007/s00339-007-4355-4