留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物质点法的岩石单孔爆破数值模拟研究

韩方建 库启贤 于海军 邱乙 邹明 王蒙

韩方建, 库启贤, 于海军, 邱乙, 邹明, 王蒙. 基于物质点法的岩石单孔爆破数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
引用本文: 韩方建, 库启贤, 于海军, 邱乙, 邹明, 王蒙. 基于物质点法的岩石单孔爆破数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
HAN Fangjian, KU Qixian, YU Haijun, QIU Yi, ZOU Ming, WANG Meng. Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
Citation: HAN Fangjian, KU Qixian, YU Haijun, QIU Yi, ZOU Ming, WANG Meng. Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229

基于物质点法的岩石单孔爆破数值模拟研究

doi: 10.21656/1000-0887.450229
基金项目: 

四川省自然科学基金(2022NSFSC1915)

详细信息
    作者简介:

    韩方建(1969—),男,高级工程师;库启贤(1979—),男,高级工程师(通讯作者. E-mail: 695449588@qq.com).

    通讯作者:

    库启贤(1979—),男,高级工程师(通讯作者. E-mail: 695449588@qq.com).

  • 中图分类号: O39

Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method

  • 摘要: 钻爆法是矿产资源开采中主要的破岩手段,其爆破破岩理论分析对适用条件进行了极大约束,且其爆破试验存在着费用昂贵和爆后裂纹难以观察等局限性,因此数值方法已成为探索岩石爆破破碎机理的重要补充手段.该文构建了耦合广义插值物质点(GIMP)和对流粒子域插值物质点(CPDI)的二维物质点模型,分析了背景网格和物质点离散尺寸效应影响.研究表明:背景网格和物质点离散尺寸会显著地影响爆炸能量传递,岩石的损伤程度与炸药向岩石传递的总能量呈正相关;GIMP类型物质点适宜爆炸核心区用于模拟极大压缩变形,CPDI类型物质点更适合模拟岩石爆破破坏情况;沿径向传播的环状应力波会在环向产生较大的拉应力,从而导致径向裂纹的产生.
  • [2]WAGNER H. Deep mining: a rock engineering challenge[J]. Rock Mechanics and Rock Engineering,2019,52(5): 1417-1446.
    FENG X T, YAO Z B, LI S J, et al. In situ observation of hard surrounding rock displacement at 2400-m-deep tunnels[J]. Rock Mechanics and Rock Engineering,2018,51(3): 873-892.
    [3]RANJITH P G, ZHAO J, JU M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering,2017,3(4): 546-551.
    [4]CASTRO L, BEWICK R, CARTER T. An overview of numerical modelling applied to deep mining[M]//Innovative Numerical Modelling in Geomechanics. Boca Raton: CRC Press, 2012: 405-426.
    [5]LI X, ZHU Z, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunnelling and Underground Space Technology,2021,113: 103968.
    [6]NEINGO P N, THOLANA T. Trends in productivity in the South African gold mining industry[J]. Journal of the Southern African Institute of Mining and Metallurgy,2016,116(3): 283-290.
    [7]CHEN Q K, ZHU W C. Mechanism of the crack formation induced by pre-split blasting and design method for the pre-split blasting hole space[J]. Journal of Northeastern University (Natural Science),2011,32(7): 1024.
    [8]柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021,42(1): 1-14.(LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics,2021,42(1): 1-14. (in Chinese))
    [9]BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures,2017,182: 1-13.
    [10]ZHU W C, BAI Y, LI X B, et al. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J]. International Journal of Impact Engineering,2012,49: 142-157.
    [11]XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting[J]. Tunnelling and Underground Space Technology,2016,58: 257-270.
    [12]XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses[J]. Tunnelling and Underground Space Technology,2017,66: 19-33.
    [13]BOBET A, FAKHIMI A, JOHNSON S, et al. Numerical models in discontinuous media: review of advances for rock mechanics applications[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(11): 1547-1561.
    [14]DONZE F V, BOUCHEZ J, MAGNIER S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8): 1153-1163.
    [15]DE VAUCORBEIL A, NGUYEN V P, SINAIE S, et al. Material point method after 25 years: theory, implementation, and applications[J]. Advances in Applied Mechanics,2020,53: 185-398.
    [16]BANADAKI M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering,2012,40: 16-25.
    [17]LEE J S, HSU C K, CHANG C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX[J]. Thermochimica Acta,2002,392: 173-176.
    [18]HEUZE O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique,2012,340(10): 679-687.
    [19]LEMONS D S, LUND C M. Thermodynamics of high temperature, Mie-Gruneisen solids[J]. American Journal of Physics,1999,67(12): 1105-1108.
    [20]WANG Y, ZENG X, CHEN H, et al. Modified Johnson-Cook constitutive model of metallic materials under a wide range of temperatures and strain rates[J]. Results in Physics,2021,27: 104498.
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-17
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回