留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带随机激励下具有时滞反馈的三稳态能量采集系统动力学分析

肖玉柱 王若涵 孙中奎 赵楠楠

肖玉柱, 王若涵, 孙中奎, 赵楠楠. 窄带随机激励下具有时滞反馈的三稳态能量采集系统动力学分析[J]. 应用数学和力学, 2025, 46(6): 742-754. doi: 10.21656/1000-0887.450237
引用本文: 肖玉柱, 王若涵, 孙中奎, 赵楠楠. 窄带随机激励下具有时滞反馈的三稳态能量采集系统动力学分析[J]. 应用数学和力学, 2025, 46(6): 742-754. doi: 10.21656/1000-0887.450237
XIAO Yuzhu, WANG Ruohan, SUN Zhongkui, ZHAO Nannan. Dynamics of a Tri-Stable Energy Harvesting System With Time-Delay Feedback Under Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(6): 742-754. doi: 10.21656/1000-0887.450237
Citation: XIAO Yuzhu, WANG Ruohan, SUN Zhongkui, ZHAO Nannan. Dynamics of a Tri-Stable Energy Harvesting System With Time-Delay Feedback Under Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(6): 742-754. doi: 10.21656/1000-0887.450237

窄带随机激励下具有时滞反馈的三稳态能量采集系统动力学分析

doi: 10.21656/1000-0887.450237
(我刊青年编委孙中奎来稿)
基金项目: 

国家自然科学基金 12302033

详细信息
    作者简介:

    肖玉柱(1980—),男,副教授,博士,硕士生导师(E-mail: yuzhuxiao@chd.edu.cn)

    通讯作者:

    赵楠楠(1991—),男,副教授,博士,硕士生导师(通讯作者. E-mail: nzhao@chd.edu.cn)

  • 中图分类号: O322;O324

Dynamics of a Tri-Stable Energy Harvesting System With Time-Delay Feedback Under Narrow-Band Random Excitation

(Contributed by SUN Zhongkui, M.AMM Youth Editorial Board)
  • 摘要: 提出了一种窄带随机激励下具有时滞反馈控制的三稳态能量采集器. 首先,利用多尺度方法得到了能量采集系统在主共振附近的稳态响应. 然后, 采用矩方法推导出了系统的一阶与二阶非平凡稳态矩, 并通过Monte-Carlo仿真验证了其准确性. 最后, 基于上述稳态响应矩, 探讨了系统参数对能量采集性能的影响. 研究结果表明:非线性刚度系数的增加可以扩大能量采集系统的工作带宽, 窄带随机激励强度的增加可以使能量采集系统的输出电压增大, 压电耦合项的增加将导致振幅的二阶稳态矩减小, 进而有利于实现能量采集器的小型化设计. 此外, 当控制反馈增益为负值时,既有利于实现能量采集器的小型化设计,又能有效地增大系统的功率输出. 相关结果可为进一步探索和优化能量采集系统提供一定的理论参考.
    1)  (我刊青年编委孙中奎来稿)
  • 图  1  三稳态能量采集系统的模型

    Figure  1.  The model for the tri-stable energy harvesting system

    图  2  F=2.5, Ω=2.5时,随机激励的功率S(ω)

    Figure  2.  Power spectrum S(ω) of random excitation for fixed F=2.5, Ω=2.5

    图  3  振幅的一阶和二阶稳态矩与失谐频率σ的关系

    Figure  3.  The 1st-order and the 2nd-order steady-state moments of the vibration amplitudes as functions of detuning frequency σ

    图  4  振幅与电压的一阶稳态矩随失谐参数σ变化的函数

    Figure  4.  The functions of the 1st-order steady-state moments of the vibration amplitude and the voltage with the detuning parameter

    图  5  图 4中所选用的势能函数图

    Figure  5.  Potential energy function curves selected in fig. 4

    图  6  二阶稳态矩Ea2Ev2和平均输出功率EP随失谐频率σ的变化

    Figure  6.  The 2nd-order steady-state moments Ea2, Ev2 and average output power EP changing with detuning frequency excitation σ

    图  7  不同噪声强度与时滞下的时间历程

    Figure  7.  Time histories with different noise intensities and time delays

    图  8  不同失谐频率下的随机响应和不同噪声强度下的相位轨迹

    Figure  8.  Random responses with different detuning frequencies and phase trajectories with different noise intensities

    图  9  Ea2EP随噪声强度和激励幅值变化的三维图

    Figure  9.  The 3D curves of Ea2 and EP with noise intensities and excitation amplitudes

    图  10  Ea2EP随压电耦合项k与时间常数比λ变化的三维图

    Figure  10.  The 3D curves of Ea2and EP with piezoelectric coupling term kand time constant ratio λ

    图  11  Ea2EP随反馈增益β和时间延迟τ变化的三维图

    Figure  11.  The 3D curves of Ea2 and EP with feedback gain β and time delay τ

    图  12  不同的反馈增益下, 振幅的二阶稳态矩Ea2和平均输出功率EP随时间常数比λ的变化

    Figure  12.  The 2nd-order steady-state moments of vibration amplitude Ea2 and mean output power EP as functions of time constant ratio λ with different feedback gains

    图  13  双稳态能量采集系统的时间历程

    Figure  13.  The output voltage time histories of the bistable energy system

  • [1] MARTIN P, CHARBIWALA Z, SRIVASTAVA M. DoubleDip: leveraging thermoelectric harvesting for low power monitoring of sporadic water use[C]//Proceedings of the 10 th ACM Conference on Embedded Network Sensor Systems. Toronto, Ontario, Canada: ACM, 2012: 225-238.
    [2] PRIYA S, INMAN D J. Energy Harvesting Technologies[M]. Boston, MA: Springer, 2009.
    [3] ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics[J]. Smart Materials and Structures, 2004, 13(5): 1131-1142. doi: 10.1088/0964-1726/13/5/018
    [4] 杨涛, 周生喜, 曹庆杰, 等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11): 2894-2909. doi: 10.6052/0459-1879-21-474

    YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. (in Chinese) doi: 10.6052/0459-1879-21-474
    [5] MAURYA D, PEDDIGARI M, KANG M G, et al. Lead-free piezoelectric materials and composites for high power density energy harvesting[J]. Journal of Materials Research, 2018, 33(16): 2235-2263. doi: 10.1557/jmr.2018.172
    [6] WEI C, JING X. A comprehensive review on vibration energy harvesting: modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18. doi: 10.1016/j.rser.2017.01.073
    [7] YILDIRIM T, GHAYESH M H, LI W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 435-449. doi: 10.1016/j.rser.2016.12.073
    [8] 刘久周, 张凤玲, 辛健强, 等. 一种非线性宽频压电能量收集系统的动力学特性分析[J]. 振动工程学报, 2021, 34(3): 567-576.

    LIU Jiuzhou, ZHANG Fengling, XIN Jianqiang, et al. Dynamic characteristics of a nonlinear wideband energy harvester based on piezoelectric material[J]. Journal of Vibration Engineering, 2021, 34(3): 567-576. (in Chinese)
    [9] ERTURK A, HOFFMANN J, INMAN D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102. doi: 10.1063/1.3159815
    [10] VOCCA H, NERI I, TRAVASSO F, et al. Kinetic energy harvesting with bistable oscillators[J]. Applied Energy, 2012, 97: 771-776. doi: 10.1016/j.apenergy.2011.12.087
    [11] STANTON S C, OWENS B A M, MANN B P. Harmonic balance analysis of the bistable piezoelectric inertial generator[J]. Journal of Sound and Vibration, 2012, 331(15): 3617-3627. doi: 10.1016/j.jsv.2012.03.012
    [12] ZHOU S, CAO J, INMAN D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39. doi: 10.1016/j.apenergy.2014.07.077
    [13] TÉKAM G T O, KWUIMY C A K, WOAFO P. Analysis of tristable energy harvesting system having fractional order viscoelastic material[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(1): 013112. doi: 10.1063/1.4905276
    [14] 郑友成, 朱强国, 刘周龙, 等. 非对称、变势能阱三稳态压电振动能量采集器特性研究[J]. 振动工程学报, 2023, 36(5): 1280-1291.

    ZHENG Youcheng, ZHU Qiangguo, LIU Zhoulong, et al. Research on tri-stable piezoelectric vibration energy harvester with asymmetric and time-varying potential wells[J]. Journal of Vibration Engineering, 2023, 36(5): 1280-1291. (in Chinese)
    [15] ZHANG Y, JIN Y, XU P. Stochastic resonance and bifurcations in a harmonically driven tri-stable potential with colored noise[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2019, 29(2): 023127. doi: 10.1063/1.5053479
    [16] PANYAM M, DAQAQ M F. Characterizing the effective bandwidth of tri-stable energy harvesters[J]. Journal of Sound and Vibration, 2017, 386: 336-358. doi: 10.1016/j.jsv.2016.09.022
    [17] 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展[J]. 力学学报, 2017, 49(3): 565-587.

    ZHANG Shu, XU Jian. Review on nonlinear dynamics in systems with coulpling delays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587. (in Chinese)
    [18] XU J, YU P. Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks[J]. International Journal of Bifurcation and Chaos, 2004, 14(8): 2777-2798. doi: 10.1142/S0218127404010989
    [19] 王道航, 孙博, 刘春霞, 等. 时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究[J]. 应用数学和力学, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037

    WANG Daohang, SUN Bo, LIU Chunxia, et al. Vertical vibration control of nonlinear viscoelastic isolation systems with time delay feedback[J]. Applied Mathematics and Mechanics, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037
    [20] BELHAQ M, GHOULI Z, HAMDI M. Energy harvesting in a Mathieu-Van der Pol-Duffing MEMS device using time delay[J]. Nonlinear Dynamics, 2018, 94(4): 2537-2546. doi: 10.1007/s11071-018-4508-3
    [21] PARK S, LEE C, KIM H, et al. Development of piezoelectric energy harvesting modules for impedance-based wireless structural health monitoring system[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 746-752. doi: 10.1007/s12205-013-0225-0
    [22] YANG T, CAO Q. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities[J]. Mechanical Systems and Signal Processing, 2018, 103: 216-235. doi: 10.1016/j.ymssp.2017.10.002
    [23] YANG T, CAO Q. Time delay improves beneficial performance of a novel hybrid energy harvester[J]. Nonlinear Dynamics, 2019, 96(2): 1511-1530. doi: 10.1007/s11071-019-04868-z
    [24] 聂欣, 张婷婷, 靳艳飞. 窄带随机激励下三稳态压电俘能器的动力学特性与实验研究[J]. 动力学与控制学报, 2023, 21(3): 53-62.

    NIE Xin, ZHANG Tingting, JIN Yanfei. Dynamical behaviors and experimental analysis of tri-stable piezoelectric energy harvester under narrow-band random excitations[J]. Journal of Dynamics and Control, 2023, 21(3): 53-62. (in Chinese)
    [25] 黄冬梅, 徐伟, 谢公南. 随机窄带噪声作用下非线性碰撞振动系统的稳态响应研究[J]. 应用数学和力学, 2016, 37(6): 633-643. doi: 10.3879/j.issn.1000-0887.2016.06.009

    HUANG Dongmei, XU Wei, XIE Gongnan. Dynamic responses of nonlinear vibro-impact systems under narrow-band random parametric excitation[J]. Applied Mathematics and Mechanics, 2016, 37(6): 633-643. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.06.009
    [26] JIN Y, ZHANG Y. Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation[J]. Acta Mechanica, 2021, 232(3): 1045-1060. doi: 10.1007/s00707-020-02877-3
    [27] YANG Y G, HE L L, ZENG Y H, S et al. Stochastic analysis of a time-delayed viscoelastic energy harvester subjected to narrow-band noise[J]. International Journal of Non-Linear Mechanics, 2022, 147: 104230. doi: 10.1016/j.ijnonlinmec.2022.104230
    [28] ZHANG Y, JIN Y, ZHANG Z. Dynamics of a tri-stable hybrid energy harvester under narrow-band random excitation[J]. International Journal of Non-Linear Mechanics, 2023, 148: 104294. doi: 10.1016/j.ijnonlinmec.2022.104294
    [29] HUANG D, ZHOU S, YANG Z. Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations[J]. Complexity, 2019, 2019(1): 1050143. doi: 10.1155/2019/1050143
    [30] DAVIES H G, LIU Q. The response envelope probability density function of a Duffing oscillator with random narrow-band excitation[J]. Journal of Sound and Vibration, 1990, 139(1): 1-8. doi: 10.1016/0022-460X(90)90770-Z
  • 加载中
图(13)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-16
  • 刊出日期:  2025-06-01

目录

    /

    返回文章
    返回